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Abstract
It has previously been established ([IS16]) that the Casimir equation, that defines con-
formal blocks, coincides for a particular choice of coordinates with the time-independent
Schrödinger equation of the BC2-Calogero–Sutherland model, which is an integrable
model whose integrability and solutions have been studied using Dunkl operators and
the representation theory of particular Hecke algebras.

To further explore this relation between conformal blocks and the Calogero–Sutherland
model, we develop a general formalism to have not only invariant differential operators
(like the quadratic Casimir element) but also invariant Clifford algebra-valued differential
operators (like an appropriate Dirac operator) act on solutions to the conformal Ward
identities. We then compute the action of Kostant’s cubic Dirac operator for the (almost)
scalar case and obtain a matrix whose entries can be expressed using Dunkl operators.

Title: Spinorial Conformal Blocks: Dirac Action and Integrability
Author: Philip Simon Schlösser, philip.schlosser@student.uva.nl, 12626708
Supervisors: dr. M. Isachenkov, dr. H.B. Posthuma
Second Examiners: dr. R.R.J. Bocklandt, dr. C.N. Cheng
Examination date: 5 July 2022

Korteweg-de Vries Institute for Mathematics
University of Amsterdam
Science Park 105-107, 1098 XG Amsterdam
https://kdvi.uva.nl

Institute of Physics
University of Amsterdam
Science Park 904, 1098 XH Amsterdam
https://iop.uva.nl

i

https://kdvi.uva.nl
https://iop.uva.nl


Introduction

Why CFT?
Symmetries are one of the cornerstones of modern theoretical physics. In quantum field
theory (QFT), a central role is being played by the “symmetry group of spacetime”, i.e.
the group of isometries (metric-preserving diffeomorphisms) of the pseudo-Riemannian
manifold we want to define QFTs on. Invariance under this group is one of the fun-
damental requirements for a QFT. This is why every QFT textbook (e.g. [Sre07]) and
set of lecture notes (e.g. [Ton]) under the sun includes – directly or indirectly – some
discussion of the Poincaré and Lorentz groups and their representation theory.

If we choose to enlarge this symmetry group to the group of conformal transformations,
i.e. angle-preserving diffeomorphisms, diffeomorphisms that are allowed to scale the
metric, we are in the realm of conformal field theory (CFT). Invariance under this larger
symmetry group severely constrains a theory, to the point where we can associate with
it a “small” set of parameters that fully determines it: the CFT data.

We are only going to consider CFT on flat spacetime (be it Minkowski or Euclidean)
here. In that case it turns out that CFT in two dimensions is qualitatively (and quan-
titatively) very different from > 2 dimensions. We are only going to talk about d > 2
here.

In this setting (and also for d = 2 flat spacetime), one class of conformal transforma-
tions is dilation, i.e. expansion or contraction. Conformal invariance then implies that
the physical phenomena that a CFT describes are scale-invariant. This is not the whole
story, as there are scale-invariant QFTs that are not conformal [FGS11], but it is a big
part of it.

Now, it might seem that a scale-invariant QFT is not of much use. After all, the real
world is very much scale-dependent, and for example the presence of massive particles
in our theory would introduce an energy scale and therefore violate scale-invariance. So
how physically relevant can a scale-invariant QFT (and by extension, a CFT) really be?
Roughly speaking, there are two fields of application: high-energy physics and statistical
mechanics. The former uses Lorentzian signature, and the latter Euclidean.

Universality Classes

The first point of relevance is on its face a purely theoretical one. Regardless of conformal
symmetry, we can always investigate the effect of dilation on a QFT. This will usually
change the theory (e.g. by changing parameters), so in effect it induces a (smooth)
dynamical system on “theory space”: the renormalisation group flow (RG flow). A
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dynamical system that we can study like any other (smooth) dynamical system: by
studying its fixed points 1, i.e. by studying scale-invariant QFTs.

Any orbit of the RG flow could then theoretically be periodic or connect two (not
necessarily different) fixed points. As the former does not happen in practice, we can
associate to every QFT the two endpoints of its RG flow orbit: the UV- and IR-limits
for maximum contraction and maximum dilation, respectively. This means that we can
classify QFTs by the properties of their UV- and IR-limits. In particular:

• Are they CFTs?

• If yes, which ones?

Under this classification, we say that QFTs fall into universality classes.

Critical Phenomena

A more concrete example where we can observe scale-invariant QFTs in real life is that
of critical opalescence. As is outlined e.g. in [BRW19, section 5.5], critical opalescence is
a consequence of there being density fluctuations of all scales at the critical point, or to
paraphrase one of the authors directly: “not just bubbles a few millimetres in diameter,
but bubbles of all sizes, bubbles inside other bubbles, bubbles intersecting with each
other” (January 2020, as part of the university course Statistical Physics and Condensed
Matter Theory, extension). This suggests that the theory governing the behaviour of
density fluctuations at the critical point is scale-invariant.

This turns out to be correct, and moreover, for any condensed matter system that has
a critical point, the behaviour at that critical point is governed by its IR-limit, according
to [Zin96, section 25]. This means that the aforementioned universality classes not only
describe some abstract high- and low-energy limits of QFTs, but actually describe critical
behaviour, such as critical exponents of certain quantities, of real-world (and non-real-
world) condensed matter systems. Further references include [Hen99].

Cosmology and Quantum Gravity

Kicked off in 1998 by [Mal98], a hypothesised correspondence between (supersymmetric)
type-IIB string theory on anti-de Sitter backgrounds and (super) CFTs on the boundaries
of these backgrounds has become an important field of study within cosmology and string
theory. This is known as the AdS/CFT-correspondence, which has become an important
tool in tackling quantum gravity problems such as the black hole information paradox
(see [Haw05]). An also slightly dated but very extensive review can be found at (all the
papers referenced in) [Bei+12], and for an introduction, see [Năs15].

More generally, the AdS/CFT correspondence is the prime example of the holographic
principle, the notion that quantum gravity in some region (bulk) of spacetime can be
described with a theory on the (lower-dimensional) boundary of that region. In other

1as away from the fixed points, every flow can be “rectified” and hence can be transformed to look “the
same”. This is the rectification theorem, e.g. [Arn78, section 7.1]
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words: that like a hologram, the bulk is fully described by the boundary theory. This
principle was first established by [Sus95].

d = 2 CFT in String Theory

A more hands-on relevance for string theory is provided by the fact that path integral
computations involve fields on the 2-dimensional world sheet that are conformally in-
variant. Examples include the bc Faddeev–Popov ghost system, see e.g. [Pol05, section
3.3]. This turns out, however, to have little in common with the subject of this thesis,
as 2-dimensional CFTs have a much larger symmetry algebra: the (infinite-dimensional)
Virasoro algebra, see [Sch08, chapter 5]. This constrains 2-dimensional CFTs even more,
and gives rise to sophisticated techniques like vertex operator algebras and the use of
complex analysis, which are inapplicable to the d > 2 case we’re going to be concerned
with.

Conformal Bootstrap

Now we’ve seen some of the sources of CFTs and some of the reasons why they are a
relevant topic, and remembered that each CFT is fully determined by a “small” set of
parameters: the CFT data. A natural next step is now to work the other way around, and
ask which CFT data could conceivably correspond to a CFT. This is achieved by using
conformal invariance and in particular the operator product expansion (Section 1.4) to
derive properties of the n-point correlations function: the conformal Ward identities
(Section 1.2) and the crossing equations (Section 1.5). In the spirit of Wightman’s
Reconstruction theorem ([Sch08, theorem 8.18]) and the Osterwalder–Schrader theorem
([Sch08, section 8.6]), correlation functions that satisfy these axioms then give rise to a
CFT.

The quest for “reconstructing” CFTs thus becomes the task of solving the crossing
equations. It turns out to be sufficient to solve the crossing equation for the 4-point
function. Now, this is still a functional equation, which in general is hard to solve. To
help with that, it proves useful to expand the 4-point function as a series in “nice” func-
tions, called conformal blocks (Section 1.6), that satisfy the conformal Ward identities
and that are eigenfunctions of the quadratic Casimir element of the conformal algebra.
If we substitute this expansion into the crossing equation, we obtain system of quadratic
equations for the coefficients (see (1.7)).

By applying linear functionals to both sides, we obtain equations (of numbers!) that
can be solved. The art of choosing the correct (i.e. most useful) functional involves a
lot of knowledge about the conformal blocks and their properties, and a lot of analytical
and numerical (e.g. [Sim15]) techniques have been developed to aid with that.

This procedure is known as the conformal bootstrap and was first started by [Pol74]
and [FGG73]. Reviews of the current state of the art can be found at [PRV19], [Har+22],
and [PS22].
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Integrable Systems
Another reason why symmetries are so relevant to modern physics is Noether’s theorem,
which states that every (smooth) symmetry produces a conserved quantity or current.
Let us now discuss the role that conserved quantities are going to play in this thesis. For
that we abandon quantum mechanics for the moment and turn our heads to Hamiltonian
mechanics.

Assume that our phase space M has dimension 2n, then a Hamiltonian function H is
called integrable if there are n commuting linearly independent conserved quantities, i.e.
linearly independent functions fi : M → R satisfying

{H, fi} = 0 (i = 1, . . . , n), {fi, fj} = 0 (i, j = 1, . . . , n)

({·, ·} are the Poisson brackets). Under mild conditions (the level sets of H have
to be compact), there exists a canonical transformation to action-angle coordinates
(w1, . . . , wn, J1, . . . , Jn) where the transformed Hamiltonian H̃ does not depend on the
generalised positions w1, . . . , wn. As a consequence, time evolution is given by

ẇi = ∂H̃

∂Ji
= νi(J1, . . . , Jn), J̇i = − ∂H̃

∂wi
= 0,

where νi only depends on J1, . . . , Jn and is hence time-independent. Furthermore, the
coordinates J1, . . . , Jn are determined by the values of the conserved quantities f1, . . . , fn.
To summarise the property of integrability in a sentence: “There are enough conserved
quantities to uniquely determine time evolution of any point in phase space.”

Example: Two-Body System with Central Force

Consider M = R12, describing two bodies in R3, one having position x = (x1, x2, x3)
and momentum p, the other having position X and momentum P , let V : R → R be
strictly monotonically increasing and smooth. Define

H(x,X, p, P ) := ∥p∥2

2m + ∥P∥2

2M + V (∥x−X∥).

This system is evidently translation and rotation symmetric. By Noether’s theorem,
this implies the conservation of total momentum p + P and total angular momentum
x× p+X ×P . These are six independent conserved quantities, hence this Hamiltonian
is integrable. The extra condition of the existence of action-angle coordinates is also
satisfied.

Example: Calogero–Sutherland Model

Let A = RN
>0, a = RN and let R ⊆ a∗ be a root system with R+ ⊆ R a set of positive

roots. Let k : R → R be a real-valued label that is invariant under the action of R’s
Weyl group W .
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Define H : A× a∗ → R

H(exp(u), λ) := 1
2∥λ∥2 +

∑
α∈R+

kα(kα + 2k2α − 1)∥α∥2

8 sinh2
(

α(u)
2

) .

This is the Calogero–Sutherland (CS) model, which was shown in [OP76]2 to be inte-
grable.

For the case where R is of type An we obtain

H(exp(u), λ) = ∥λ∥2

2 +
∑
i>j

k(k − 1)
2 sinh2

(
ui−uj

2

) ,
a system of n particles in one dimension that interact via a csch2-potential. And, as a
slightly more involved example, when R is of type BCn, we obtain

H(exp(u), λ) = ∥λ∥2

2 +
n∑

i=1

(
k1(k1 + 2k3 − 1)

4 sinh2(ui
2
) + 4k3(k3 − 1)

4 sinh2(ui)

)

+
∑
i>j

 k2(k2 − 1)
2 sinh2

(
ui−uj

2

) + k2(k2 − 1)
2 sinh2

(
ui+uj

2

)


=: ∥λ∥2

2 +
n∑

i=1
VP T (ui)

+ 1
4k2(k2 − 1)

∑
i ̸=j

(V (ui − uj) + V (ui + uj))

+ k3(k3 − 1)
n∑

i=1
V (2ui)

So we have again an interaction by a csch2-potential, but in addition, our particles are
also subject to an “external” potential VP T

3, and the interaction also involves ui + uj-
dependency. We can interpret this as interaction as follows: the particle with coordinate
exp(ui) has an image particle at exp(−ui), and the particles interact not only with
each other but also with each other’s images. In particular, the interaction between a
particle and its own image may have a different interaction energy (4k3(k3 − 1) instead
of k2(k2 − 1)).

If we canonically quantise this Hamiltonian system (and then obtain what is usually re-
ferred to as the CS model), we obtain a quantum integrable system that admits solutions
in terms of of Heckman–Opdam hypergeometric functions (details in [Opd00, section 6]
and [HS94, chapters 2 and 4]). Both the CS model and the Heckman–Opdam hyper-
geometric functions have been extensively studied with the use of special differential

2only for the classical root systems, but it’s also true for the exceptional ones
3“PT” stands for Pöschl–Teller, the authors of the paper [PT33] that first considered csch2-potentials

in quantum mechanics
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reflection operators called Dunkl(–Cherednik) operators and the representation theory of
certain degenerate affine Hecke algebras. We will see more of that in the second part of
this thesis.

Relation to Conformal Blocks

Having now introduced both CFT and integrable models, we should also address the
question why they are relevant to the same master thesis. The answer to this question
was provided six years ago by [IS16] with more in-depth explanation two years later
in [IS18], in which is shown that the Casimir eigenvalue equation for conformal blocks
(for four scalar fields) is actually conjugate to the Schrödinger equation of the BC2-
CS model, so that we can use all the theory about Dunkl operators to address scalar
conformal blocks. Since then, various efforts, e.g. [SSI17], [SS18], have been undertaken
to generalise this correspondence to “spinning” conformal blocks, i.e. conformal blocks
corresponding to non-scalar fields and to a matrix version of the CS model. Further
generalisations include a generalisation to defect blocks (i.e. operators supported on
defects) [Isa+18], and to n-point functions with n > 4 [Bur+21]. However, a general
theory remains elusive at time of writing.

In [IS16] it is pointed out that this correspondence between the Casimir eigenvalue
equation and the CS model can be understood as follows: the (action of the) quadratic
Casimir element is the radial part of the Laplace–Beltrami operator on the conformal
group G with respect to a subgroup K (i.e. the Laplace–Beltrami operator acting on
functions that satisfy a left and right equivariance condition with respect to K). These
radial parts have been shown e.g. by [HS94, proposition 5.1.5] (in a slightly different
setting) to be related to a sum of squares of Dunkl operators and thereby the CS model.

The correspondence “Laplace–Beltrami operator” ↔ “sum of squares of Dunkl opera-
tors” begs the question that if we take a different invariant operator on the left side, could
we maybe obtain single Dunkl operators on the right side? Now, since Dunkl operators
are of order 1, any invariant differential operator we apply on the left would have to have
order 1 as well, and there usually (in semisimple Lie algebras) any invariant 1st-order
differential operators. However, if we scout around, slightly widen our horizons, we are
quickly reminded of a question that led to relativistic quantum mechanics: is there a
square root of the Laplacian? And indeed, if we consider the answer to that question,
the Dirac operator, we quickly notice that it is an invariant differential operator of order
1 that is matrix-valued (or Clifford algebra-valued to be precise).

This leads us to some of the central questions we’re going to consider in this thesis:
what is the general theory of having Clifford algebra-valued invariant differential oper-
ators act on (spinning) conformal blocks, and is there a relation between the action of
an appropriate Dirac operator and the CS model?

To put it in physics language: from [IS16] we know that scalar conformal blocks are
solutions to a (quantum) integrable system that is obtained by having the Laplacian act
on the conformal blocks. If instead we apply its “square root”, the Dirac operator, to a
spinorial conformal block, can we recover traces of our integrable system that allow us
to achieve a deeper understanding of this conformal block ↔ CS model correspondence?
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Outline
Let’s now see how this thesis is structured. We are first going to dive a bit deeper
into CFTs (Section 1.1) and make precise our introduction section (Sections 1.2, 1.4) as
well as the line of thought that leads towards conformal blocks (Section 1.6) and the
crossing equation (Section 1.5). Then, after briefly introducing some useful tools (Chap-
ter 2) that are going to be used throughout this thesis, we will analyse the structure of
the conformal group (Chapter 3) and the structure of the space of point configurations
(Section 3.3). Then, we will introduce induced representations (Chapter 4), make more
concrete some statements about conformal blocks, and then recap/develop the general
theory of invariant (Clifford algebra-valued and scalar) differential operators on confor-
mal blocks (Sections 4.2 and 4.3, respectively). This leads us to considering the actions
of quadratic Casimir element and (Kostant’s cubic) Dirac operator on scalar/as-scalar-
as-possible4 conformal blocks (Chapter 5).

Afterwards we will introduce some of the general theory of Dunkl operators (Sec-
tion 6.3), the Hecke algebras (Section 6.4), their representation theory (Section 6.5),
and work towards expressing the differential operators from before in terms of Dunkl
operators (Sections 6.7 and 6.8, respectively).

4Any action of a Dirac operator involves a representation of a Clifford algebra. We will take the smallest
such representation
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1. Setup

Let p + q = d > 2 be natural numbers with p ≥ q. Most commonly we will encounter
q = 0 or q = 1. In the following we will refer to the vector space Rp,q = Rd, equipped
with the standard bilinear form η of signature (p, q), as (p, q)-spacetime.

1.1. Conformal Fields
For ordinary quantum field theory, the Wightman axioms state that we can interpret
quantum field operators, elements of a set we’re calling FO, to be tempered operator-
valued distributions on spacetime, that carry a representation of the Poincaré group
SO(p, q)⋉Rp,q (cf. Appendix A.1 for the precise meaning of these words). And they are
usually classified by means of this representation. For conformal field theories, we are
enhancing the symmetry group to the group G := SO(p+ 1, q + 1)0, whose Lie algebra
can be decomposed as g = m ⊕ a ⊕ n ⊕ n, with

m = span {Fµν | 1 ≤ µ, ν ≤ d} ∼= so(p, q)
a = RD ∼= R
n = span {Kµ | 1 ≤ µ ≤ d}
n = span {Pµ | 1 ≤ µ ≤ d} .

These basis elements satisfy the commutation relations

[Fµν , F ρσ] = ηνρFµσ + ηµσF νρ − ηνσFµρ − ηµρF νσ

[Fµν ,Kρ] = ηνρKµ − ηµρKν

[Fµν , P ρ] = ηνρPµ − ηµρP ν

[D,Kµ] = Kµ

[D,Pµ] = −Pµ

[Kµ, P ν ] = 2Fµν + 2ηµνD

(with all other commutators being zero). We can see that m⊕ n is the Poincaré algebra
from “ordinary” quantum field theory, D is taken to represent dilations, and the Kµ are
special conformal transformations (SCTs). It is also handy to introduce q := m ⊕ a ⊕ n,
which is a Lie subalgebra. Analogously, we can introduce the subgroups

M ∼= SO(p, q), A ∼= R, N,N ∼= Rd

associated to these subalgebras, and their product Q := MAN ≤ G, which is also a
group, a maximal parabolic subgroup, as we’re going to see in Section 3.2.
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In particular, for q = 0 we have

M =


1 0 0

0 m 0
0 0 1


∣∣∣∣∣∣∣ m ∈ SO(p)


and for q = 1 we have

M =


±1 0 0

0 m 0
0 0 ±1


∣∣∣∣∣∣∣ m ∈ SO(p, 1)


where ±1 is chosen depending on if m lies in the identity component or not.

We can then choose our fields (ψi)i∈I such that

(Fµν · ψi)(0) =
∑
j∈I

π(Fµν)j
iψj(0)

(D · ψi)(0) = ∆iψi(0) (1.1)
(Kµ · ψi)(0) = 0

for ∆i ∈ R and (π, V ) a representation of SO(p, q). In that case we say that the (ψi)i∈I

are primary fields, with scaling dimensions (∆i)i∈I that transform as the representation
π. We can reconstruct the entire representation of G on our fields ψi from this data: as
part of the Poincaré algebra, the operators Pµ represent translations, and hence we have

(exp(−xµPµ) · ψi)(0) = ψi(x).

Note that here and in the remainder of this thesis, we’re going to abuse notation and
write distributions as generalised functions.

To get the actions of m, a, n away from 0, we can leverage the commutators of these
subalgebras with n and obtain

(Fµν · ψi)(x) = π(Fµν)j
iψj(x) + xν∂µψi(x) − xµ∂νψi(x)

(D · ψi)(x) = ∆iψi(x) − xµ∂µψi(x) (1.2)
(Kµ · ψi)(x) = −2xνΣ j

µν iψj(x) − 2xµ(∆i − xν∂ν)ψi(x) − x2∂µψi(x).

Thus we’ve described a representation of g. Usually we have a bit more: a represen-
tation of the Lie group G. In order to attempt to describe that representation, we will
make some notational simplifications. Recall that V was what we called the representa-
tion space of π, and let (vi)i∈I be the basis of V that gives rise to the matrix elements
π(Fµν)j

i used earlier:
Fµν · vi = π(Fµν)vi = π(Fµν)i

jv
j .

Without loss of generality, we can choose the vi to be compatible with a given decom-
position of V into irreps, so that there is a partition (Iα)α∈J so that (vi)i∈Iα is the basis
of an irreducible component of V .

2



We can now define the tensor operator-valued distribution (tensor field operator)

ψ : S(Rd) → V ⊗ O(H), ψ := viψi,

where O(H) denotes the densely defined linear operators on H. Then

(Fµν · ψ)(0) = vi ⊗ (Fµν · ψi)(0)
= vi ⊗ π(Fµν)j

iψj

= π(Fµν)j
iv

i ⊗ ψj

= (π(Fµν)vi) ⊗ ψi

= π(Fµν)ψ(0).

Next, extend the representation π to q by having π(D)vi = ∆iv
i and π(Kµ) = 0. Then

the Equations 1.1 reduce to

(ξ · ψ)(0) = π(ξ)ψ(0) ξ ∈ q.

Since π lifts to a representation of Q ∼= (SO(p, q) ×R)⋉Rp,q 1, we can use this to define
the generalised function

Ψ : NQ “→” V ⊗ O(H), (exp(xµPµ)p) 7→ π(p−1)ψ(x).

Now, the set NQ is dense in G, and since we assume that the representation from
(1.2) lifts to a group representation, we can continue Ψ to all of G. The left regular
representation of G,

(g · Ψ)(h) := Ψ(g−1h),
is then the aforementioned lift.

For a distributionally more sound definition, write ∆Q for Q’s modular function (note
that we can pick Haar measures such that µG = µN ⊗ (∆Q · µQ)). Then define

Ψ : C∞
c (G) → V ⊗ O(H)

as ∫
Q

∆Q(q)π(q−1)ψ(i(Rq(f))) dµQ (q)

where i(f)(x) := f(exp(xµPµ)) (x ∈ Rp,q) and where (Rg(f))(h) = f(hg). The integral
is to be understood weakly: for v ∈ D and w ∈ H we define

⟨w,Ψ(f)v⟩ :=
∫
Q

∆Q(q)π(q−1)⟨w,ψ(i(Rq(f)))v⟩ dµQ (q)

This integral is finite because the set

{q ∈ Q | i(Rq(f)) ̸= 0} =
{
q ∈ Q

∣∣∣ ∃n ∈ N : nq ∈ supp(f)
}
,

1it started out as a representation of SO(p, q), and the analytic subgroups for a, n are simply connected
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the image of the relatively compact set NQ ∩ supp(f) under the continuous projection
map NQ → Q, is also compact. Ψ then satisfies

Ψ(Rp(f)) =
∫
Q

∆Q(q)π(q−1)ψ(i(Rqp(f))) dµQ (q)

=
∫
Q

∆Q(q)π(p)π(qp)−1ψ(i(Rqp(f))) dµQ (q)

= π(p)
∫
Q

∆Q(q)π(q)−1ψ(i(Rq(f))) dµQ (q)

= π(p)Ψ(f),

where we used that ∆Q · µQ is a right Haar measure.

1.2. Correlation Functions
The axioms for (conformal) quantum field theory further require the existence of a notion
of an expectation value ⟨·⟩ that can be taken of the fields, and which is invariant under
the operation of shifting all fields by g ∈ G. Using our simplifications from earlier, we
can define vector-valued distributions

gn : (Rp,q)n → V ⊗n,

(x1, . . . , xn) 7→ ⟨ψ(x1) ⊗ · · · ⊗ ψ(xn) = ⟨ψi1(x1) · · ·ψin(xn)⟩vi1 ⊗ · · · ⊗ vin

(see Appendix A.1 for tensor products of tensor field operators) and

Gn : Gn → V ⊗n, (x1, . . . , xn) 7→ ⟨Ψ(x1) ⊗ · · · ⊗ Ψ(xn)⟩

(where any elements of V ⊗n are just pulled out of ⟨·⟩). These are called the n-point
functions or correlators.

The distributions Gn then satisfy

Gn(x1p1, . . . , xnpn) = π(p−1
1 ) ⊗ · · · ⊗ π(p−1

n )Gn(x1, . . . , xn) (1.3)

for p1, . . . , pn ∈ Q and

Gn(gx1, . . . , gxn) = Gn(x1, . . . , xn). (1.4)

These equations (or rather, what they correspond to for gn), are called the conformal
Ward identities.

These transformation properties show that we’re dealing with

(IndG
Q(π)⊗n)G ∼= (IndGn

Qn(π⊗n))∆nG

i.e. the invariants of a Kronecker product of induced representations, either in the
noncompact picture (gn) or in the induced picture (Gn). (∆nG is the diagonal subgroup
{(g, . . . , g) ∈ Gn | g ∈ G}.)
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That we’re working with G = SO(p, q), dictates that our fields have boson statistics,
i.e. commute when taking the expectation value. We therefore expect the following
behaviour of our expectation values:

⟨ψi1(x1) · · ·ψin(xn)⟩ = ⟨ψiσ(1)(xσ(1)) · · ·ψiσ(n)(xσ(n))⟩ (1.5)

for σ ∈ Sn. If we let Sn act on V ⊗n by permuting tensor factors, and call this represen-
tation Σ, this equation reads

Gn(xσ(1), . . . , xσ(n)) = Σ(σ)−1Gn(x1, . . . , xn).

Note that to simplify calculations, we can decompose V into irreducible Q-modules

V =
⊕
α∈J

Vα

(by requiring the N -part to be trivial and the A-part to be one-dimensional, we can
ensure that V is semisimple), so that

IndG
Q(π)⊗n ∼=

⊕
α1,...,αn∈J

IndG
Q(πα1) ⊗ · · · ⊗ IndG

Q(παn)

(J indexes the irreducible components of the Q-module (V, π)), so it makes sense to con-
sider the more general (seeming) case where we’re inducing from (potentially different)
irreducible representations π1, . . . , πn.

We will see later that the covariance conditions are already enough to completely
fix the 1-, 2-, and 3-point functions. For the case of πi trivial on M and with scaling
dimension ∆i this follows as follows:

Example 1.2.1 (1-Point Function). G1(g) = G1(1) is a constant.

Example 1.2.2 (n-Point Function). Due to translational symmetry we have

gn(x1, . . . , xn) = gn(0, x2 − x1, . . . , xn − x1) =: hn(x2 − x1, . . . , xn − x1).

Due to rotational symmetry we have

hn(mv1, . . . ,mvn−1) = hn(v1, . . . , vn−1)

for all m ∈ SO(p, q), showing that hn only depends on the scalars η(vi, vj) (i, j =
1, . . . , n− 1). Besides, we have

η(vi, vj) = η(xi+1 − x1, xj+1 − x1) = 1
2(x2

i+1,j+1 − x2
1,i+1 − x2

1,j+1),

showing that there is kn such that

gn(x1, . . . , xn) = kn(x2
12, . . . , x

2
1n, x

2
23, . . . , x

2
n−1,n).
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Here, kn takes n(n−1)
2 -many scalar inputs. Next, scaling invariance shows that

gn(ax1, . . . , axn) = kn(a2x2
12, . . . , a

2x2
1n, a

2x2
23, . . . , a

2x2
n−1,n)

= a−∆1−···−∆ngn(x1, . . . , xn)
= a−∆1−···−∆nkn(x2

12, . . . , x
2
1n, x

2
23, . . . , x

2
n−1,n),

hence kn is homogeneous of degree −∆1−···−∆n
2 .

Lastly, using Proposition B.4.2, inversion invariance shows that

gn(x1, . . . , xn) = ∥x1∥−2∆1 · · · ∥xn∥−2∆ngn

(
−w0wx1

∥x1∥2 , . . . ,−
w0wxn

∥xn∥2

)
. (1.6)

Note that ∥∥∥∥∥−w0wxi

∥xi∥2 + w0wxj

∥xj∥2

∥∥∥∥∥
2

=
∥∥∥∥∥ xi

∥xi∥2 − xj

∥xj∥2

∥∥∥∥∥
2

= 1
∥xi∥2 + 1

∥xj∥2 − 2⟨xi, xj⟩
∥xi∥2∥xj∥2

= 1
∥xi∥2 + 1

∥xj∥2 +
x2

ij − ∥xi∥2 − ∥xj∥2

∥xi∥2∥xj∥2

=
x2

ij

∥xi∥2∥xj∥2 ,

hence, (1.6) becomes

kn((x2
ij)i<j) = ∥x1∥−2∆1 · · · ∥xn∥−2∆nkn

( x2
ij

∥xi∥2∥xj∥2

)
i<j

.
Together with scaling invariance, this fixes the dependence on n variables, so that ulti-
mately kn depends (relatively freely) only on

n(n− 1)
2 − n = n(n− 3)

2
variables. For n = 2, this equals −1, so the function is even overdetermined and is forced
to be zero in some cases. For n = 3, this equals 0, so the 3-point function is fixed up to
a constant, and for n = 4, this equals 2, which we will see more in-depth later.

Example 1.2.3 (2p Function). For the 2-point function, the inversion behaviour shows
that

k2(x2
12) = ∥x1∥−2∆1∥x2∥−2∆2k2

(
x2

12
∥x1∥2∥x2∥2

)

=
(∥x2∥

∥x1∥

)∆12

k2(x2
12),

so either k2 = 0 or ∆1 = ∆2.
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Example 1.2.4 (3p Function). For the 3-point function, the inversion behaviour shows
that

k3(x2
23, x

2
31, x

2
12) =

k3
(

x2
23

∥x2∥2∥x3∥2 ,
x2

31
∥x3∥2∥x1∥2 ,

x2
12

∥x1∥2∥x2∥2

)
∥x1∥2∆1∥x2∥2∆2∥x3∥2∆3

= k3(x2
1x

2
23, x

2
2x

2
31, x

2
3x

2
12)

∥x1∥∆1+∆2+∆3∥x2∥∆1−∆2+∆3∥x3∥∆1+∆2−∆3
,

which shows that

k3(a2u, b2v, c2w) = 1
a−∆1+∆2+∆3b∆1−∆2+∆3c∆1+∆2−∆3

k3(u, v, w),

i.e. that
g3(x1, x2, x3) = k3(1, 1, 1)

x−∆1+∆2+∆3
23 x∆1−∆2+∆3

31 x∆1+∆2−∆3
12

.

1.3. Aside: Fermion Statistics
Instead of looking at G = SO(p, q)0, we could also consider Spin(p, q)0, which allows for
non-integer-spin representations, and therefore for fermionic fields. These then anticom-
mute with each other, but still commute with the bosonic fields.

The way we can formalise this is that we require a decomposition V = V + ⊕ V − into
even and odd subspaces that is compatible with the g-isotypic decomposition. We then
define the map τ ∈ End(V ⊗ V ) by

τ((v+ + v−) ⊗ (w+ + w−)) := w+ ⊗ v+ + w− ⊗ v+ + w+ ⊗ v− − w− ⊗ v−,

which flips its inputs and negates the odd elements that were exchanged with odd ele-
ments. Now it turns out that τ satisfies the braid relations, and we can build a repre-
sentation Σ of Sn on V ⊗n by having

(i, i+ 1) 7→ id⊗i−1
V ⊗τ ⊗ id⊗n−i−1

V ,

i.e. by acting on the i-th and i+ 1-st tensor factor with τ . If Gn is an n-point function,
the permutation behaviour of (1.5) generalises to

Gn(xσ(1), . . . , xσ(n)) = Σ(σ)−1Gn(x1, . . . , xn)

1.4. Operator-Product Expansions (OPEs)
An important feature of CFTs is that products of field operators evaluated at different
points can be developed around one of the points:

ψi(x)ψj(y) =
∑
k∈I

λijkfijk(x, y, z)ψk(z)|z=y,
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where equality is to be seen in terms of asymptotic expansions in x−y, see Appendix A.2.
Here, fijk(x, y, z) is an asymptotic series (in x− y) of differential operators in z.

If we define f(x, y, z) to be a Hom(V, V ⊗ V )-valued differential operator so that

f(x, y, z)vk = vi ⊗ vjfijk(x, y, z),

then the desired intertwining property reads

f(x, y, z)(ξ · ψ)(z) = (1 ⊗ ξ + ξ ⊗ 1)f(x, y, z)ψ(z),

where U(g) ⊗ 1 acts on x and the V ⊗ 1, and 1 ⊗ U(g) acts on y and 1 ⊗ V .
Note that since composition of operators is associative (ignoring potential differences

in domain), the same should hold for the OPE.
Now, this equality as asymptotic expansion doesn’t provide any information about

convergence, so even calling it equality is a stretch. However, it turns out, when applied
to the vacuum state, or more generally within a correlation function, the OPE actually
has a nonempty region of convergence (for details, see [PRV19, section II] or [Mac77])2.
This means that n-point functions can be reduced to the severely restricted two-point
functions, and thus be calculated. Thus, all correlation functions (and hence the theory)
are fixed by the representation π, the scaling dimensions ∆i, and the coefficients λijk.
These are collectively known as the CFT data.

1.5. Crossing Equations
We can now flip this process on its head and ask which CFT data produces a valid CFT.
In addition to unitarity constraints and causality/reflection positivity, an important
requirement is the aforementioned associativity of the OPE. In particular, if we reduce

⟨ψi1(x1) · · ·ψin(xn)⟩

using the OPE, it can’t matter in which order we do this. That is, we want∑
k∈I

λi1i2kfi1i2k(x1, x2, y)⟨ψk(y)ψi3(x3) · · ·ψin(xn)⟩|y=x2

=
∑
k∈I

λi2i3kfi2i3k(x2, x3, y)⟨ψi1(x1)ψk(y)ψi4(x4) · · ·ψin(xn)⟩|y=x3

(or similarly for any other pair of operators next to each other). This equation is called
the crossing equation. We have

⟨ψi1(x1) · · ·ψi4(x4)⟩ =
∑
k∈I

λi1i2kfi1i2k(x1, x2, y)⟨ψk(y)ψi3(x3)ψi4(x4)⟩|y=x2

=
∑

k,k′∈I

λi1i2ik
λk′i3i4fi1i2k(x1, x2, y)fi3i4k′(x3, x4, y

′)·

⟨ψk(y)ψk′(y′)⟩|y=x2,y′=x4 .

2for a more distributional point of view, cf. [KQR20] and [KQR21]
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Since the 2-point function is only nonzero if vk, vk′ live in irreps that are dual to each
other, this sum becomes a single sum, say

=
∑
k∈I

λi1i2kλi3i4k̃fi1i2k(x1, x2, y)fi3i4k̃(x3, x4, y
′)⟨ψk(y)ψk̃(y′)⟩|y=x2,y′=x4

=:
∑
k∈I

λi1i2kλi3i4k̃W
k
i1i2i3i4(x1, . . . , x4).

The functionsW k are called conformal partial waves (CPWs) or conformal blocks (though
the literature, e.g. [PRV19], reserves the name “conformal blocks” for slightly modified
CPWs).

To reduce our number of indices, define

Wα(x1, . . . , x4) :=
∑

k∈Iα

vi1 ⊗ · · · ⊗ vi4W k
i1···i4(x1, . . . , x4)

where Iα ⊆ I is such that (vi)i∈Iα is a basis for the irreducible component Vα of V . The
map

Πα : V → Vα ⊆ V, aiv
i 7→

∑
i∈Iα

aiv
i,

i.e. the projection onto Vα, is a Q-intertwiner, hence it gives us an intertwiner of induced
representations. In other words

(g · (Παψ)) = Πα(g · ψ)

for g ∈ G, and similarly for differential operators. Our CPW becomes

Wα(x1, . . . , x4) = (f(x1, x2, y)Πα) ⊗ (f(x3, x4, y
′)Πα̃)⟨ψ(y) ⊗ ψ(y′)⟩|y=x2,y′=x4 .

In this index-free way, the four-point function can be written as

g4(x1, . . . , x4) =
∑
α∈J

λα ⊗ λα̃Wα(x1, . . . , x4),

where λα(vi ⊗ vj) = λijkv
i ⊗ vj (no summation), where k ∈ Jα. That f already acts as

an intertwiner, dictates that the λijk are constant on irreducibles.
Using the CPWs, the 4-point crossing equation becomes∑

k∈I

λi1i2kλi3i4k̃W
k
i1,...,i4(x1, . . . , x4) = ⟨ψi1(x1) · · ·ψi4(x4)⟩ (1.7)

= ±⟨ψi3(x3)ψi2(x2)ψi1(x1)ψi4(x4)⟩
= ±

∑
k∈I

λi2i3kλi1i4k̃W
k
i3i2i1i4(x3, x2, x1, x4),

where ± occurs according to whether or not switching ψi1 and ψi3 incurs a sign or not.
Index-free, this reads as∑

α∈J

λα ⊗ λα̃Wα(x1, . . . , x4) =
∑
α∈J

Σ((13))λα ⊗ λα̃Wα(x3, x2, x1, x4).
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1.6. Conformal Blocks
For α ∈ J we have

((g, g, g, g) ·Wα)(x1, . . . , x4) = ((g, g) · fΠα)(x1, x2, y) ⊗ ((g, g) · fΠα̃)(x3, x4, y)·
⟨ϕ(y) ⊗ ϕ(y′)⟩|y=x2,y′=x4

= f(x1, x2, y) ⊗ f(x3, x4, y
′)·

⟨(g · ϕ)(y) ⊗ (g · ϕ)(y′)⟩|y=x2,y′=x4

= Wα(x1, . . . , x4),

so both the 4-point functions and the CPWs (going from the noncompact to the induced
picture) are contained in the set

VG :=
(
IndG

Q(π1) ⊗ · · · ⊗ IndG
Q(π4)

)G
.

This set does not have a group action since we’re only considering invariants. However,
our algebra action of U(g)⊗4 partially survives: let f : G4 → V1 ⊗ · · · ⊗ V4 satisfy

f(g1p1, . . . , g4p4) = π1(p−1
1 ) ⊗ · · · ⊗ π4(p−1

4 )f(g1, . . . , g4)

(g1, . . . , g4 ∈ G, p1, . . . , p4 ∈ Q), then we can act with U(g)⊗4 by

((ξ1, . . . , ξ4) · f)(g1, . . . , g4) = d
dt1

· · · d
dt4

f(exp(−t1ξ1)g1, . . . , exp(−t4ξ4)g4)
∣∣∣∣
t=0

(ξi ∈ g). In case f is G-invariant, i.e. an element of VG, we have

(g · (q · f))(g1, . . . , g4) = (Ad(g)(q) · f)(g1, . . . , g4),

so if we have Ad(g)(q) = q, then q ·f ∈ VG as well. Thus we have an action of (U(g)⊗4)G

on VG. Let ∆ : U(g) → U(g)⊗2 be the comultiplication of the Hopf algebra U(g), given
by

∆(1) = 1, ∆(ξ) = 1 ⊗ ξ + ξ ⊗ 1

for ξ ∈ g. For any c ∈ Z(U(g)), we then have ∆(c) ⊗ ∆(1) ∈ (U(g)⊗4)G, hence this
element can act on our CPWs. If χα is the infinitesimal character of the irrep Vα =
IndQ

G(πα), then we obtain

(∆(c) ⊗ ∆(1)) ·Wα = (∆(c) ⊗ ∆(1)) · (f(·, ·, y)Πα) ⊗ (f(·, ·, y′)Πα̃)⟨ψ(y) ⊗ ψ(y′)⟩)
= (f(·, ·, y)Πα) ⊗ (f(·, ·, y′)Πα̃)⟨(c · ψ)(y) ⊗ (1 · ψ)(y′)⟩
= (f(·, ·, y)Πα) ⊗ (f(·, ·, y′)Πα̃)⟨χ(c)ψ(y) ⊗ ψ(y′)⟩
= χ(c)Wα. (1.8)

This equation is called the Casimir equation and the search for CPWs can be reinter-
preted as diagonalising the action of the Casimir elements.
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2. Useful Tools

2.1. Action on Invariants
Already in the introduction we encountered the situation of wanting to describe actions
of invariant (differential) operators on invariant functions. This was a bit awkward, so
let’s explore a better way to do this.

Definition 2.1.1. Let G be a Lie group, and let A be an associative algebra on which G
acts smoothly (by means of algebra homomorphisms). An (A, G)-module V is a smooth
G-module that is also an A-module such that

g · (x · (g−1 · v)) = (g · x) · v

for all v ∈ V, x ∈ A, g ∈ G, i.e. such that the G-action on A corresponds to the adjoint
action of GL(V ) and End(V ).

Example 2.1.2. Any smooth G-module is a (U(g), G)-module, where g · x := Ad(x) for
x ∈ g, which is then continued as an algebra automorphism.

Now for the workhorse of this section:

Lemma 2.1.3. Let V be an (A, G)-module, then V G is an AG-module.

Proof. Let v ∈ V G, x ∈ AG, g ∈ G. Then a priori, x · v ∈ V , but in fact

g · (x · v) = g · (x · (g−1g · v)) = (g · x) · (g · v) = x · v,

so x · v ∈ V G.

Lemma 2.1.4. Let V be an (A, G)-module, let ϕ : H → G be a Lie algebra homomor-
phism. Then V is also a (A, H)-module, where the actions of H on V and A are induced
by ϕ.

Example 2.1.5. Let (π1, V1), . . . , (πn, Vn) be finite-dimensional smooth representations
of a subgroup Q ≤ G of a Lie group G. Let L := g ⊗ C be the complexified Lie algebra
of G. Then V := IndGn

Qn(π1 ⊗ · · · ⊗ πn) (smooth or distributional, see Section 4) is a
Gn-module

((g1, . . . , gn) · f)(x1, . . . , xn) = f(g−1
1 x1, . . . , g

−1
n xn)

whose Gn-action can be differentiated. As a consequence, it is also a (U(L)⊗n, Gn)-
module. Via the map ∆n : G → Gn, g 7→ (g, · · · , g) we can make V into a (U(L)⊗n, G)-
module as well (using Lemma 2.1.4).

According to Lemma 2.1.3, the set VG of invariants is then a (U(L)⊗n)G-module.
This is what we used in Section 1.6.
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2.2. Clifford Algebras
Since we will be dealing with the Dirac operator later, let us now recap some facts (and
fix conventions for) Clifford algebras. Throughout this section let V be a C-vector space
with symmetric bilinear form η.

Definition 2.2.1. Define

Cℓ(V, η) := Cℓ(V ) := T (V )/⟨x⊗ x+ η(x, x)|x ∈ V ⟩

(T (V ) the tensor algebra), i.e the associative unital algebra generated by V , subject to
the relations x2 = −η(x, x) (x ∈ V ), or equivalently

{x, y} = −2η(x, y) (x, y ∈ V ).

This algebra is called the Clifford algebra.

Definition 2.2.2. (a) A vector v ∈ V is isotropic or null if η(v, v) = 0.

(b) A subspace U ⊆ V is called isotropic if all of its vectors are isotropic.

(c) Two subspaces U,U ′ are called dual if the restriction η|U×U ′ is a dual pairing.

Lemma 2.2.3. Let η be non-degenerate and V finite-dimensional. Then there are
U, Ũ , Z ≤ V subspaces such that

(a) V = U ⊕ Ũ ⊕ Z

(b) U, Ũ are isotropic

(c) U, Ũ are dual

(d) dim(Z) ≤ 1

(e) Z ⊥ U, Ũ .

Such a decomposition is called an isotropic decomposition.

Proof. In case dim(V ) = 2n + 1 is odd, pick v ∈ V with η(v, v) = 1. Then apply this
lemma to the even case of (Cv)⊥. It can be decomposed as U ⊕ Ũ (since U, Ũ are dual,
they have to have the same dimension. Consequently, Z cannot be 1-dimensional here).
Thus, we have

V = U ⊕ Ũ ⊕ Cv,

which satisfies the desired properties.
It is therefore without loss of generality that we can assume dim(V ) = 2n is even.

Let v1, . . . , v2n ∈ V be an orthonormal basis (it exists since η is nondegenerate, and C
is algebraically closed and not of characteristic 2), then define

ui := v2i−1 + iv2i√
2

, ũi := v2i−1 − iv2i√
2

.

12



We have

η(ui, uj) = 1
2(η(v2i−1, v2j−1) − η(v2i, v2j)) = 0

η(ũi, ũj) = 1
2(η(v2i−1, v2j−1) − η(v2i, v2j)) = 0

η(ui, ũj) = 1
2(η(v2i−1, v2j−1) + η(v2i, v2j)) = δij .

The sets U := span {u1, . . . , un} and Ũ := span {ũ1, . . . , ũn} are then isotropic and dual.
Furthermore,

V = U ⊕ Ũ

Definition 2.2.4. For u ∈ V define the following endomorphisms of
∧
V :

ϵu(v1 ∧ · · · ∧ vr) := u ∧ v1 ∧ · · · ∧ vr

ιu(v1 ∧ · · · ∧ vr) :=
r∑

i=1
(−1)iη(u, vi)v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vr,

the outer and inner product with u, respectively.

Proposition 2.2.5. For u, v ∈ V we have

ϵ2u = 0
ι2u = 0

{ϵu, ιv} = −η(u, v) id .

In particular, ϵ’s anticommute and ι’s anticommute.

Proof. (a) Let x ∈
∧
V , then

ϵuϵux = u ∧ x = u ∧ u ∧ x = 0.

(b) Define

ai(j) :=
{
j j < i

j + 1 j ≥ i

so that ai is the unique strictly monotonic map {1, . . . , r − 1} → {1, . . . , r} that
skips i (face map). Then,

ai ◦ aj =
{
ajai−1 j < i

aj+1ai j ≥ i.

Using these face maps we can rewrite ιu as

ιu(v1 ∧ · · · ∧ vr) =
r∑

i=1
(−1)iB(u, vi)vai(1) ∧ · · · ∧ vai(r−1).

13



We can now expand ι2u as a double sum over i, j, split up the cases j < i and j ≥ i,
exchange face maps in the second sum, reindex and switch summation order (in
the second sum):

ιuιu(v1 ∧ · · · ∧ vr) =
r∑

i=1

r−1∑
j=1

(−1)i+jB(u, vi)B(u, vai(j))vai(aj(1)) ∧ · · · ∧ vai(aj(r−2))

=
r∑

i=1

i−1∑
j=1

(−1)i+jB(u, vi)B(u, vj)vai(aj(1)) ∧ · · · ∧ vai(aj(r−2))

+
r∑

i=1

r−1∑
j=i

(−1)i+jB(u, vi)B(u, vj+1)vaj+1(ai(1)) ∧ · · · ∧ vaj+1(ai(r−2))

=
r∑

i=1

i−1∑
j=1

(−1)i+jB(u, vi)B(u, vj)vai(aj(1)) ∧ · · · ∧ vai(aj(r−2))

+
r∑

i=1

r∑
j=i+1

(−1)i+j−1B(u, vi)B(u, vj)vaj(ai(1)) ∧ · · · ∧ vaj(ai(r−2))

=
r∑

i=1

i−1∑
j=1

(−1)i+jB(u, vi)B(u, vj)vai(aj(1)) ∧ · · · ∧ vai(aj(r−2))

+
r∑

i=1

i−1∑
j=1

(−1)i+j−1B(u, vi)B(u, vj)vai(aj(1)) ∧ · · · ∧ vai(aj(r−2))

= 0.

(c) Note that
ιv(v1 ∧ x) = −B(v, v1)x− v1 ∧ ιv(x)

for x ∈
∧
V , so that

ιvϵux = ιv(u ∧ x)
= −B(v, u)x− u ∧ ιv(x)
= −B(v, u)x− ϵuιvx,

hence {ϵu, ιv}x = −η(u, v)x.

Corollary 2.2.6. Let V = U ⊕ Ũ ⊕ Z be an isotropic decomposition. Define S := ∧
U .

(a) For all ũ ∈ Ũ , the map ιũ restricts to an endomorphism of S

(b) For all u ∈ U , the map ϵu restricts to an endomorphism of S.

Proposition 2.2.7. Let V = U ⊕ Ũ ⊕Z be an isotropic decomposition, define S = ∧
U

as before, and let

S = S+ ⊕ S− =
∞⊕

i=0

2i∧
U ⊕

∞⊕
i=0

2i+1∧
U
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be the decomposition into odd and even parts. Define

m± ∈ End(S), S+ ⊕ S− ∋ s+ + s− 7→ ±i(s+ − s−),

then both m+ and m− anticommute with ϵu, ιũ (u ∈ U, ũ ∈ Ũ), and satisfy m2
± = −1.

Proof. Note that both ϵu and ιũ change the degree by one, hence they change the parity.
For x ∈ Sϵ (ϵ ∈ {±1}) we therefore have m±x = ±iϵx and

m±ιũx = ∓iϵιũx, m±ϵux = ∓iϵϵux,

whence

(m±ιũ + ιũm±)x = ∓iϵιũx± iϵιũx = 0
(m±ϵu + ϵum±)x = ∓iϵϵux± iϵϵux = 0.

Furthermore, since the two eigenvalues of m± are ±i, both endomorphisms square to
−1.

Definition 2.2.8. Assume V = U ⊕ Ũ is an isotropic decomposition. The vector space
S = ∧

U is called the spin module for Cℓ(V ), and Cℓ(V ) acts as follows:

U ⊕ Ũ ∋ (u+ ũ) · x := (ϵu + 2ιũ)x.

Assume V = U ⊕ Ũ ⊕ Cz is an isotropic decomposition with η(z, z) = 1. The vector
space S = ∧

U can be turned into two different Cℓ(V )-modules S1 and S2, also called
spin modules, by

U ⊕ Ũ ⊕ Cz ∋ (u+ ũ+ az) · x := (ϵu + 2ιũ + am±)x.

Proposition 2.2.9. Both S in the even case, and S1, S2 in the odd case are Cℓ(V )-
modules.

Proof. “even”: It suffices to show that the endomorphism on the right-hand side has the
correct square. Let u ∈ U, ũ ∈ Ũ , then

(ϵu + 2ιũ)2 = ϵ2u + 4ι2ũ + 2{ϵu, ιũ}
= −2η(u, ũ) id
= −η(u+ ũ, u+ ũ) id

by Proposition 2.2.5.
“odd”: Let u ∈ U, ũ ∈ Ũ , a ∈ C, then

(ϵu + 2ιũ + am±)2 = (ϵu + 2ιũ)2 + a2m2
± + a{ϵu,m±} + 2a{ιũ,m±}

= −η(u+ ũ, u+ ũ) id −a2 id
= −η(u+ ũ+ az, u+ ũ+ az) id

by the previous case and by Proposition 2.2.7.
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Theorem 2.2.10. Let η be non-degenerate and V finite-dimensional. Then

Cℓ(V ) ∼=
{

End(S) 2| dim(V )
End(S1) ⊕ End(S2) 2|(dim(V ) − 1)

.

Proof. For the even case, see [HP06, lemma 2.2.4], and for the odd case [HP06, section
2.2.7].

Proposition 2.2.11. Let v1, . . . , vn be an orthonormal basis of V and write Fij ∈ so(V )
for the map mapping vj 7→ vi, vi 7→ −vj, and leaving all other basis vectors invariant.
It is well-known that (Fij)1≤i<j≤n is a basis of so(V ). Let

j : so(V ) → Cℓ(V ), Fij 7→ 1
2vjvi,

then j is a Lie algebra homomorphism and for f ∈ so(V ), v ∈ V we have

f(v) = [j(f), v].

Proof. We have
[Fij , Fkl] = δjkFil + δilFjk − δikFjl − δjlFik

on one hand, and

1
4[vjvi, vlvk] = 1

4(vjvivlvk − vlvkvjvi)

= 1
4(−2δilvjvk − vjvlvivk + 2δjkvlvi + vlvjvkvi)

= 1
4(2δilvkvj + 4δilδjk + 2δljvivk + vlvjvivk + 2δjkvlvi − 2δikvlvj − vlvjvivk)

= 1
2(δilvkvj + 2δilδjk + δljvivk + δjkvlvi − δikvlvj)

= δilj(Fjk) + δjkj(Fil) − δjlj(Fik) − δikj(Fjl)
= j([Fij , Fkl]).

Note that
δilvkvj + δjkvlvi + 2δilδjk = δilj(Fjk) + δjkj(Fil)

because in case i = l and j = k both sides are zero, and otherwise the double δ term
vanishes.

Furthermore, we have

j(Fij)vk − vkj(Fij) = 1
2(vjvivk − vkvjvi)

= 1
2(−2δikvj − vjvkvi + 2δjkvi + vjvkvi)

= δjkvi − δikvj

= Fij(vk).

16



Definition 2.2.12. The Lie algebra homomorphism j : so(V ) → Cℓ(V ) is called the
Chevalley embedding.

Proposition 2.2.13. Let v1, . . . , vn ∈ V be an orthonormal basis, let f ∈ so(V ), then

j(f) = 1
4

n∑
i,j=1

η(f(vi), vj)vivj .

Proof. Let f = 1
2
∑n

i,j=1 a
ijFij for aij antisymmetric in i, j, then

1
4

n∑
i,j=1

η(f(vi), vj)vivj = 1
8

n∑
i,j,k,l=1

aklη(Fkl(vi), vj)vivj

= 1
8

n∑
i,j,k,l=1

aklη(δilvk − δikvl, vj)vivj

= 1
8

n∑
i,j,k,l=1

akl(δilδjk − δikδjl)vivj

= 1
4

n∑
i,j=1

aijvjvi

= 1
2

n∑
i,j=1

aijj(Fij)

= j(f).

2.3. Central Characters
This section is mostly inspired by [Bou58, chap. VIII, §3, no. 2]. We will discuss a
very general (algebraic) version of Schur’s lemma, and how it implies the existence of a
map called the (central) character that helps classify irreducible representations (/simple
modules).

Throughout this section let A be an associative C-algebra.

Definition 2.3.1. A left A-module M is called simple if M ̸= 0 and its only A-
submodules are 0 and M itself.

Proposition 2.3.2. Let ϕ ∈ HomA(M,N) be a linear map between A-modules.

(a) If M is simple then ϕ is either 0 or injective.

(b) If N is simple then ϕ is either 0 or surjective.

Proof. (a) Let v ∈ ker(ϕ) and a ∈ A, then ϕ(av) = aϕ(v) = a0 = 0, so av ∈ ker(ϕ).
This (together with the fact that ϕ is a C-linear map, so ker(ϕ) ⊆ M is a sub-vector
space) shows that ker(ϕ) ≤ M is an A-submodule. Since M is simple, we either
have ker(ϕ) = M , in which case ϕ = 0, or ker(ϕ) = 0, in which case ϕ is injective.
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(b) Let v ∈ M and a ∈ A, then aϕ(v) = ϕ(av) ∈ im(ϕ), so im(ϕ) ≤ N is an A-
submodule. Due to N ’s simplicity, either im(ϕ) = 0, in which case ϕ = 0, or
im(ϕ) = N , in which case ϕ is surjective.

Corollary 2.3.3. Let M be a simple A-module. Then EndA(M) is a skew field.

Proof. EndA(M) is an associative C-algebra, so all we need to do is to show that every
nonzero element of EndA(M) is invertible. This follows from Proposition 2.3.2.

Lemma 2.3.4. Let E be a (not necessarily finite-dimensional) skew field containing C
in its centre. If E ̸= C, we have [E : C] ≥ ℶ1 (the cardinality of C).

Proof. In case E ̸= C, there is an element x ∈ E \ C. Since C is algebraically closed,
x is transcendental, hence the family of elements ((x − α)−1)α∈C ∈ E is C-linearly
independent, hence the dimension of E as C-vector space is at least ℶ1.

Theorem 2.3.5. Let M be a simple A-module such that dimC(M) < ℶ1. Then EndA(M) =
C id.

Proof. By Corollary 2.3.3, EndA(M) is a skew field, which contains C in its centre.
Thus, by Lemma 2.3.4, we either have EndA(M) = C or [EndA(M) : C] ≥ ℶ1. If the
second is true, we can conclude

dimC(M) = [EndA(M) : C] dimEndA(M)(M) ≥ ℶ1,

which contradicts our assumption. Therefore, EndA(M) = C.

Corollary 2.3.6 (Schur, Dixmier). Let M,N be simple A-modules.

(a) We have HomA(M,N) = 0 or M,N are isomorphic.

(b) If one of M,N is known to have C-dimension less than ℶ1, this specialises to

dimC(HomA(M,N)) =
{

0 M ̸∼= N

1 M ∼= N.

Proof. (a) Let ϕ ∈ HomA(M,N). If ϕ ̸= 0, Proposition 2.3.2 implies that ϕ is bijective,
hence an isomorphism.

(b) It remains to show that if M ∼= N , the dimension of HomA(M,N) is at most
one. Let ϕ, ψ ∈ HomA(M,N). If one of them is zero, they are evidently linearly
dependent, so assume without loss of generality that they are nonzero. By Propo-
sition 2.3.2, they are both isomorphisms. Then ϕ−1 ◦ ψ ∈ EndA(M) is a multiple
of the identity by Theorem 2.3.5, say λ. Then ψ − λϕ = 0, hence ψ, ϕ are linearly
dependent.
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Theorem 2.3.7. Let M be a simple A-module whose C-dimension is less than ℶ1. There
exists an algebra homomorphism χ : Z(A) → C such that for all z ∈ Z(A), v ∈ M we
have

zv = χ(z)v.

Proof. Define χ : Z(A) → EndA(M) to be the left action of A (restricted to its centre).
This is well-defined because for z ∈ Z(A), a ∈ A, v ∈ M we have

χ(z)(av) = zav = azv = aχ(z)(v),

thus χ(z) is an A-endomorphism. Because of the associativity in the definition of a
module, we have χ(z)χ(w) = χ(zw), making χ into an algebra homomorphism.

By Theorem 2.3.5, χ maps to the scalar multiples of the identity, so we can compose
with the C-algebra morphism mapping id 7→ 1.

The map χ is called the central character of M . Write Â for the set of algebra
homomorphisms Z(A) → C.

Corollary 2.3.8. Let A have at most countable C-dimension. Then every simple A-
module has a central character.

Proof. Let M be a simple A-module. Let 0 ̸= v ∈ M , then v is a cyclic vector (otherwise,
Av would be a nontrivial submodule, contradicting M ’s simplicity). Thus,

dimC(M) = dimC(Av) ≤ dimC(A) ≤ ℶ0 < ℶ1.

We can thus apply Theorem 2.3.7.

Corollary 2.3.9. Let L be an at most countable-dimensional complex Lie algebra. Any
simple U(L)-module has a central character.

Proof. U(L) has countable dimension over C (unless L = 0, then it even has finite
dimension), so we can apply Corollary 2.3.8.

Definition 2.3.10. Let χ ∈ Â, let M be an A-module, then define

M [χ] := {v ∈ M | ∀z ∈ Z(A) : zv = χ(z)v} ,

the χ-isotypic component of M .

Proposition 2.3.11. Let χ ∈ Â, then the mapping

M 7→ M [χ], f ∈ HomA(M,N) 7→ f |M [χ]

defines an endofunctor in the category of A-modules that commutes with direct sums.
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Proof. We need to show that any A-linear maps maps isotypic components to isotypic
components. Let ϕ : M → N be A-linear, let z ∈ Z(A), v ∈ M [χ], then

zϕ(v) = ϕ(zv) = ϕ(χ(z)v) = χ(z)ϕ(v),

hence ϕ(v) ∈ N [χ]. Evidently composition survives restriction.
Let (Mi)i∈I be a family of modules, we show that(⊕

i∈I

Mi

)
[χ] =

⊕
i∈I

Mi[χ].

“⊇”: Let xi ∈ Mi[χ], only finitely many xi nonzero. Then for z ∈ Z(A) we have

z
∑
i∈I

xi =
∑
i∈I

zxi =
∑
i∈I

χ(z)xi = χ(z)
∑
i∈I

xi,

so ∑i∈I xi lies in the χ-isotypic component of ⊕i∈I Mi.
“⊆”: Let xi ∈ Mi, only finitely many xi nonzero, such that∑

i∈I

zxi = z
∑
i∈I

xi = χ(z)
∑
i∈I

∑
i∈I

χ(z)xi

for all z ∈ Z(A). Subtracting the left and the right side from each other, we get

0 =
∑
i∈I

(z − χ(z))xi.

Since the i ∈ I-term lies in Mi, and the sum is direct, we have (z − χ(z))xi = 0 (i ∈ I),
whence xi ∈ Mi[χ].

Proposition 2.3.12. Let M be a semisimple A-module whose simple components have
central characters, then

M =
⊕
χ∈Â

M [χ].

This is known as the isotypic decomposition.
Proof. Let N be a simple A-module with central character, then N [χ] = N or 0, de-
pending on whether χ is N ’s central character or not. Thus,

M =
⊕
i∈I

Mi

where the Mi are simple modules. For χ ∈ Â write Iχ for the set of indices such that χ
is Mi’s central character. Since every Mi has a central character, the Iχ partition I, so
that ⊕

χ∈Â

M [χ] =
⊕
χ∈Â

⊕
i∈I

Mi[χ]

=
⊕
χ∈Â

⊕
i∈Iχ

Mi

=
⊕
i∈I

Mi = M.
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3. Structure of G

With the setup and the tools out of the way, we can now get started with the actual
hamonic analysis perspective on conformal blocks. For that let’s have a closer look at
the group we will be dealing with for the rest of this thesis.

Let d = p + q > 2 with p ≥ q, and fix G := SO(p + 1, q + 1)0. For our purposes,
we will mainly be interested in the cases q = 0 (Euclidean CFT) and q = 1 (Lorentzian
CFT), but a lot of the structure theory can be done in more generality1. Write η for the
standard symmetric bilinear form on Rd+2 of signature (p+1, q+1) and interchangeably
for the matrix diag(1, . . . , 1,−1, . . . ,−1) that generates this bilinear form. Note that we
will also (continue to) use the Einstein summation convention where Greek indices run
from 0 to d+ 1 or from 1 to d. In particular, η will be used to raise and lower indices.

By [Kna96, section VII.2, example 2], (G,K, θ,B) is a reductive group, where

K = G ∩ SO(d+ 2) = SO(p+ 1) × SO(q + 1)
θ(x) = −xT = ηxη

B(x, y) = tr(xy).

3.1. Restricted Root Spaces
We now work out the restricted root space decomposition of g, en route to finding its
Iwasawa decomposition. We begin by defining a basis. Starting with

(Eµν )ρ
σ := δµ

ρ ηνσ

and
Fµν := Eµν − Eνµ.

This is a basis for g.

Proposition 3.1.1. We have

(a) [Fµν , Fρσ] = ηνρFµσ + ηµσFνρ − ηνσFµρ − ηµρFνσ

(b) Fµν = −Fνµ

(c) F T
µν = Fµν if µ ≤ p < ν or vice-versa, and F T

µν = −Fµν if µ, ν ≤ p or p < µ, ν

1Note that the case q = 1 somewhat differs from the others, as in that case G’s fundamental group is
Z, so that its universal cover does not have finite centre, and is hence not of Harish-Chandra type.
This makes its representation theory harder to grasp, and is one of the reasons we’re not looking at
universal covers in this thesis.
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Proof. (a) We start by calculating products of E’s:

(EµνEρσ )α
β = (Eµν )α

γ(Eρσ )γ
β

= δα
µηνγδ

γ
ρησβ

= ηνρ(Eµσ )α
β,

hence EµνEρσ = ηνρEµσ. This shows that

[Fµν , Fρσ] = ηνρFµσ + ηµσFνρ − ηνσFµρ − ηµρFνσ.

(b) From definition.

(c) If ηµµ = ηνν , we have δρ
µηνσ = ηρµδνσ, and hence

(Fµν)ρ
σ = δρ

µηνσ − δρ
νηµσ

= ηρµδ
σ
ν − ηρνδ

σ
µ

= (Fνµ)σ
ρ

= (−F T
µν)ρ

σ.

This is the case if µν ≤ p or > p.
Otherwise, we have ηµν = −ηνν , then we acquire another minus, hence (Fµν)T =
Fµν .

We see that

k = span {Fµν | µ, ν ≤ p or p < µ, ν}
p = span {Fµν | µ ≤ p < ν} .

For µ < ν, the matrix Fµν has a 1 at (µ, ν), and ±1 (depending on if it is contained in
p or k) in (ν, µ).

We now pick a maximal commutative subspace of p. Define Di := F i,d+1−i (i =
0, . . . , q).

Proposition 3.1.2. The vector space

ap := span {D0, . . . , Dq} ≤ p

is a maximal commutative subalgebra.

Proof. From Proposition 3.1.1(a) we know that any Di commutes with all Fµν with
{µ, ν} ∩ {i, d+ 1 − i} = ∅. Consequently, we have [Di, Dj ] = 0, i.e. ap is a commutative
subalgebra.

Let now
x = 1

2a
µνFµν ∈ p
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(aµν antisymmetric) commute with all Di, then

[Di, x] = 1
2a

µν(δd+1−i
µ F i

ν + δi
νF

d+1−i
µ − δd+1−i

ν F i
µ − δi

µF
d+1−1

ν )

= ad+1−i
νF

i,ν − ai
νF

d+1−i,ν

= 0

That x ∈ p, implies that aµν = 0 for µ, ν ≤ p and µ, ν > p. Thus the first contrac-
tion ai

νF
d+1−1,ν lies in the 0 ⊕ so(q + 1)-component of k, and the second contraction

a d+1−i
µ F i,µ lies in the so(p+1)⊕0-component. Thus, they are linearly independent, and

we get aµ
d+1−i = 0 for all µ ≤ p and i ≤ q, hence a = 0. Thus, ap is indeed maximal.

Corollary 3.1.3. g has real rank q + 1.

Define ϵi ∈ a∗
p by ϵi(Dj) = δi,j .

Proposition 3.1.4. Then
g = mp ⊕ ap ⊕

⊕
α∈R

gα

where
R := {ϵi, ϵi ± ϵj ,−ϵi ± ϵj | 0 ≤ i < j ≤ q}

is of type Bq+1.

Proof. From the theory of semisimple Lie groups, e.g. [Kna96, section VI.4] it is well-
known that our desired decomposition exists (for R the set of roots) and is direct. So it
suffices to find all the roots.

Let 0 ≤ i, j ≤ q and q < µ ≤ p, then[
Di, F

jµ ± F d+1−j,µ
]

= −ηi,jF d+1−i,µ ± ηd+1−i,d+1−jF i,µ

= ∓δi,j

(
F i,µ ± F d+1−i,µ

)
= (∓ϵj)(Di)(F jµ ± F d+1−j,µ),

so F jµ ± F d+1−j,µ ∈ g∓ϵj .
Let 0 ≤ i ̸= j, k ≤ q, then[
Dk, F

ij ± F i,d+1−j + F d+1−i,j ± F d+1−i,d+1−j
]

=ηjkF d+1−k,i − ηikF d+1−k,j ∓ ηikF d+1−k,d+1−j ∓ ηd+1−k,d+1−jF ki

+ ηd+1−i,d+1−kF kj + ηjkF d+1−k,d+1−i ± ηd+1−i,d+1−kF k,d+1−j ∓ ηd+1−j,d+1−kF k,d+1−i

=(∓δjk − δik)
(
F ij ± F i,d+1−j + F d+1−i,j ± F d+1−i,d+1−j

)
=(−ϵi ∓ ϵj)(Dk)

(
F ij ± F i,d+1−j + F d+1−i,j ± F d+1−i,d+1−j

)
,

so that F ij ± F i,d+1−j + F d+1−i,j ± F d+1−i,d+1−j ∈ g−ϵi∓ϵj , and θ applied to it lies in
gϵi±ϵj .
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Lastly, for q < µν ≤ p we have

[Dk, F
µν ] = 0,

so that Fµν ∈ mp.
Thus, we’ve found the following roots: ±ϵi (i = 0, . . . , q), ϵi ± ϵj , and −ϵi ± ϵj (both

for i ̸= j). We can now count dimensions to show that we’ve already accounted for
everything: we know

dim(g±ϵi) ≥ p− q, dim(gϵi±ϵj ),= dim(g−ϵi∓ϵj ) ≥ 1

and
dim(mp) ≥ (p− q)(p− q − 1)

2 ,

so that we have

(d+ 2)(d+ 1)
2 = dim(g)

= dim
(
mp ⊕ ap ⊕

⊕
α∈R

gα

)
= dim(mp) + dim(ap) +

∑
α∈R

dim(gα)

≥ (p− q)(p− q − 1)
2 + q + 1 + 2(q + 1)(p− q) + 2(q + 1)q

= (d+ 2)(d+ 1)
2 ,

so we have found all roots and all root spaces.

3.2. Conformal Compactification and Parabolic Subgroup
As mentioned in the introduction, the group G is of interest to us because it is the group
of (local) conformal transformations of Rp,q. This is proven e.g. in [Sch08, theorem 2.9].
The way this works is that we embed Rp,q into a bigger (compact) manifold R̂p,q, on
which G acts globally. This embedding is called the conformal compactification of R̂p,q.

We define

R̂p,q :=
{

(x0 : · · · : xd+1) ∈ Pd+1(R)
∣∣∣ xµx

µ = η(x, x) = 0
}
,

the projectivisation of the subset of (non-zero) isotropic vectors in Rp+1,q+1, and the
embedding is

ι : Rp,q → R̂p,q, v 7→ (1 − η(v, v) : 2v : 1 + η(v, v))

(we use η for the symmetric bilinear form on Rp,q as well).
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Proposition 3.2.1. We have

R̂p,q = ι(Rp,q) ⊔ {x ∈ Rp,q | η(x, x) = 0} ⊔ ̂Rp−1,q−1 = X1 ⊔X2 ⊔X3

and ι(Rp,q) is dense. In particular, X2 ∪X3 = ∂X1 and X3 = ∂X2.

Proof. Let
(x0 : · · · : xd+1) ∈ R̂p,q.

If x0 + xd+1 ̸= 0, define x := (x1,...,xd)
x0+xd+1

, then

η(x, x) =
x2

d+1 − x2
0

(x0 + xd+1)2 = xd+1 − x0
xd+1 + x0

,

hence

ι(x) =
(

1 − xd+1 − x0
xd+1 + x0

: 2(x1 : · · · : xd)
x0 + xd+1

: 1 + xd+1 − x0
xd+1 + x0

)
= (xd+1 + x0 − xd+1 + x0 : 2x1 : · · · : 2xd : xd+1 + x0 + xd+1 − x0)
= (x0 : · · · : xd+1).

Otherwise, we have x0 = −xd+1. If both are nonzero, we can fix x0 = −xd+1 = 1,
then x1, . . . , xd are fixed and form an isotropic vector in Rp,q.

If both are zero, we have an element of ̂Rp−1,q−1 via the embedding

(x0 : · · · : xd−1) 7→ (0 : x0 : · · · : xd−1 : 0).

This shows the decomposition of R̂p,q. To see that ι(Rp,q) is dense, note that we can
reach all of R̂p,q as limits of straight lines in Rp,q: Let u, v ∈ Rp,q (v ̸= 0), consider the
line u+ vt:

ι(u+vt) =
(
1 − η(u, u) − 2tη(u, v) − t2η(v, v) : 2u+ 2vt : 1 + η(u, u) + 2tη(u, v) + t2η(v, v)

)
.

If η(v, v) ̸= 0, we have

ι(u+ vt) =
(

− 1
t2

+ η(u, u)
t2

+ 2η(u, v)
t

+ 1 : −2u
t2

− 2v
t

: − 1
t2

− η(u, u)
t2

− 2η(u, v)
t

− 1
)
,

which converges to (1 : 0 : −1) as t → ∞.
If v is isotropic, but η(u, v) ̸= 0, we have

ι(u+ vt) =
(
η(u, u) − 1
2tη(u, v) + 1 : − u

tη(u, v) − v

η(u, v) : −η(u, u) − 1
2tη(u, v) − 1

)
,

which converges to
(
1 : − v

η(u,v) : −1
)

∈ X2 as t → ∞, showing that X2 ⊆ X1
If we replace u by ϵu, we obtain(

1 : − v

ϵη(u, v) : −1
)

=
(
ϵ : − v

η(u, v) : −ϵ
)
,
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which converges to (0 : − v
η(u,v) : 0) ∈ X3 as ϵ → 0. This shows that X2 = X2 ⊔X3.

If v is isotropic and η(u, v) = 0 we have

ι(u+ vt) =
(1 − η(u, u)

2t : u
t

+ v : 1 + η(u, u)
2t

)
,

which converges to (0 : v : 0) ∈ X3 as t → ∞. This shows that X2 ⊆ X1 as well, hence
that R̂p,q = ι(Rp,q).

Two elements of R̂p,q are of particular importance: (1 : 0 : 1) = ι(0) will be called the
origin, and (1 : 0 : −1) = ∞ will be called the point at infinity. As we just saw, all rays
with anisotropic “velocity” v converge to ∞. Similarly, all light rays (rays with isotropic
“velocity” v) starting from the origin converge to (0 : v : 0) in the third component, and
those that start somewhere else land either in the second or third component.

The reason we introduced this conformal compactification is that G is supposed to
act on all of it. This is the case because the standard representation of G on Rp+1,q+1

preserves η, and hence the notion of isotropic vectors, and because it acts by means of
injective maps.

Lemma 3.2.2. The action of G (and even of K) on R̂p,q is transitive.

Proof. Write q : Rp+1,q+1 \ {0} → Pd+1(R) for the projectivisation map. Let q(u⊕ v) ∈
R̂p,q where u ∈ Rp+1, v ∈ Rq+1. That u⊕ v is isotropic and non-null implies that ∥u∥ =
∥v∥ > 0 (Euclidean norms). Without loss of generality assume that ∥u∥ = ∥v∥ = 1. Since
SO(h) acts transitively on Sh−1 for every h > 1, there are m ∈ SO(p+1), n ∈ SO(q+1)
with me1 = u, neq+1 = v. Then m⊕ n ∈ SO(p+ 1) × SO(q + 1) = K ≤ G with

(m⊕ n)(1 : 0 : 1) = q(me1 ⊕ neq+1) = q(u⊕ v),

where the 0 in (1 : 0 : 1) is a tuple of d-many zeroes. Thus, everything is contained in
the orbit of (1 : 0 : 1).

Corollary 3.2.3. Let Q be the stabiliser of the origin ι(0), then R̂p,q ∼= G/Q as mani-
folds.

We are now interested in what the Lie algebra q looks like.

Lemma 3.2.4. Let

Γ = {ϵ0, ϵ0 ± ϵi | 1 ≤ i ≤ q} ∪ {±ϵi, ϵi ± ϵj ,−ϵi ± ϵj | 1 ≤ i < j ≤ q} ⊆ R,

then
q = mp ⊕ a ⊕

⊕
α∈Γ

gα.

Proof. We have g ∈ Q iff g(e0 +ed+1) ∈ R(e0 +ed+1). Hence, ξ ∈ q iff the same condition
holds.
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Let 1 ≤ j ≤ q, then Di = F i,d+1−i has only zeroes in the 0-th and d+ 1-st column, so
Di · (e0 + ed+1) = 0, hence D1, . . . , Dq ∈ q. Furthermore,

D0(e0 + ed+1) = F 0,d+1(e0 + ed+1) = e0 + ed+1,

so D0 ∈ q as well. I.e. ap ⊆ q. Since q is a Lie algebra, this means that [ap, q] ⊆ q and
hence that

q = (ap ⊕ mp ∩ q) ⊕
⊕
α∈R

(gα ∩ q).

So we only need to see what these intersections are.
Let 1 ≤ j ≤ q and q < µ ≤ p, then Fjµ ± Fd+1−j,µ only has nonzero entries only in

the columns j, d+ 1 − j, µ, hence

(F jµ ± F d+1−j,µ)(e0 + ed+1) = 0 ∈ R(e0 + ed+1),

whence g∓ϵj ⊆ q.
Furthermore,

(F 0µ ± F d+1,µ)(e0 + ed+1) = (F 0µ ∓ Fµ,d+1)(e0 + ed+1) = (−eµ ∓ eµ),

hence gϵ0 ⊆ q, but also g−ϵ0 ∩ q = 0.
Let 1 ≤ i ̸= j ≤ q, then F ij ±F i,d+1−j +F d+1−i,j ±F d+1−i,d+1−j and F ij ∓F i,d+1−j −

F d+1−i,j ±F d+1−i,d+1−j have both only nonzero values in columns i, j, d+1− i, d+1−j.
None of these are 0 or d+ 1, hence they both lie in q as well. Consequently,

g−ϵi∓ϵj , gϵi±ϵj ⊆ q.

For 1 ≤ j ≤ q we have

(F 0j ± F 0,d+1−j + F d+1,j ± F d+1,d+1−j)(e0 + ed+1) = −ej ± ed+1−j − ej ± ed+1−j ̸= 0

and

(F 0j ∓ F 0,d+1−j − F d+1,j ± F d+1,d+1−j)(e0 + ed+1) = −ej ∓ ed+1−j + ej ± ed+1−j = 0,

so g−ϵ0∓ϵi ∩ q = 0 and gϵ0±ϵi ⊆ q.
Lastly, for q < µ, µ ≤ p the matrix Fµν has only nonzero entries in columns µ, ν,

which are both different from 0, d+ 1, hence mp ⊆ q.

Corollary 3.2.5. The subalgebra q ≤ g is maximal parabolic.

Proof. If we pick
R+ := {ϵi, ϵi ± ϵj | 0 ≤ i < j ≤ q} ,

this is a valid choice of positive roots, with simple roots

S := {ϵ0 − ϵ1, ϵ2 − ϵ1, . . . , ϵq−1 − ϵq, ϵq}
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Picking S′ := S \ {ϵ0 − ϵ1}, we have

Γ = R+ ∪ (R ∩ span(S′)).

In particular, the minimal parabolic subalgebra associated to R+ is contained in q,
whence q is parabolic.

For maximality, assume there is a parabolic subalgebra q ≤ q′ ≤ g. According to
[Kna96, proposition 7.76], q′ is associated to another subset S′′ of primitive roots. Due
to the inclusions, we’d have S′ ⊆ S′′ ⊆ S. Since S′ and S differ only by one element, we
have either S′ = S′′ or S = S′′. In either case, one of the inclusions is an equality.

Now, with this parabolic subgroup come a whole lot of subalgebras. In particular,

a =
q⋂

i=1
ker(ϵi) = RD0

aM = (a)⊥ = span {D1, . . . , Dq}

m = aM ⊕ mp ⊕
⊕

β∈Γ∩−Γ
gβ

= span {Fµν | 1 ≤ µ, ν ≤ d}

n = gϵ0 ⊕
q⊕

i=1
(gϵ0+ϵi ⊕ gϵ0−ϵi)

= span {Kµ | 1 ≤ µ ≤ d}

nM =
⊕

α∈Γ∩−Γ∩R+

gα

= span
{
Fµν − F d+1−µ,ν

∣∣∣ 1 ≤ µ ≤ q, 1 ≤ ν ≤ d
}

where Kµ := F 0µ − F d+1,µ. Analogously, define Pµ := −F 0µ − F d+1,µ (1 ≤ µ ≤ d) and

n = span {Pµ | 1 ≤ µ ≤ d} .

Note that
−Pµ = F0µ − Fd+1,µ.

For Λµν antisymmetric (1 ≤ µ, ν ≤ d) and b ∈ Rp,q we then have[1
2ΛµνF

µν , bρK
ρ
]

= 1
2Λµνbρ

[
Fµν , F 0ρ − F d+1,ρ

]
= 1

2Λµνbρ

(
ηµρF ν0 − ηνρFµ0 − ηµρF ν,d+1 + ηνρFµ,d+1

)
= −Λµνbρη

νρ
(
Fµ0 − Fµ,d+1

)
= Λµνb

νKµ

= (Λb)µK
µ,
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and similarly for xµPµ. As matrices we have

bµK
µ =

 0 bT
• 0

−b• 0 b•

0 −bT
• 0

, xµP
µ =

 0 −xT
• 0

x• 0 x•

0 −xT
• 0

,
where x• and x• is the d×1-matrix in whose µ-th row is the entry xµ or xµ, respectively.

In order to show that Q is the parabolic subgroup associated to q. We need to recall
some statements about parabolic subgroups.

Proposition 3.2.6. Let A,N,AM , NM be the analytic subgroups of a, n, aM , nM , let
M = 0ZG(a), let MM = ZK∩M (aM ), and KM = K ∩M . Then

(a) MA = ZG(a) is reductive, with A as its noncompact Abelian (vector space) com-
ponent, and M as its remainder (also reductive).

(b) M has Lie algebra m.

(c) MM = Mp, so that MpAMNM = MMAMNM ≤ M is a minimal parabolic sub-
group. Furthermore, KMAMNM = M is an Iwasawa decomposition.

(d) MA normalises N , so that Q = MAN is a group.

(e) Q = NG(q) ≤ G is a closed subgroup.

(f) Q has Lie algebra q.

(g) Multiplication M ×A×N → Q is a diffeomorphism.

(h) N ∩Q = 1.

(i) G = KQ.

Proof. [Kna96, proposition 7.82(a–c)] and [Kna96, proposition 7.83].

Lemma 3.2.7. The group Q is the parabolic subgroup of the parabolic subalgebra q.

Proof. Write Q′ for the parabolic subgroup, then we need to show Q = Q′.
“⊇”: We have the Langlands decomposition (Proposition 3.2.6(d)) Q′ = MAN where
A,N are the analytic subgroups for a, n. Since a, n fix ι(0), so do their analytic subgroups,
so it remains to show that M ⊆ Q′. For that we use the Iwasawa decomposition of M ,
which is (Proposition 3.2.6(c)) M = KMAMNM with AM , NM the analytic subgroups
for aM , nM and KM = ZK(a). Since both aM , nM fix ι(0), so do their analytic subgroups.

So it remains to check for KM . Let(
A 0
0 B

)
∈ K
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fix D0 (write as block matrices with blocks p+ 1, q + 1, both index from 1 to p/q + 1).
Written out this is(

A 0
0 B

)(
0 e1e

T
q+1

eq+1e
T
1 0

)(
AT 0
0 BT

)
=
(

0 Ae1e
T
q+1B

T

Beq+1e
T
1 A

T 0

)

=
(

0 e1e
T
q+1

eq+1e
T
1

)
,

hence Ae1(Beq+1)T = e1e
T
q+1, i.e. Ae1 = λe1 and Beq+1 = λ−1eq+1 for λ ∈ R. Since ±1

are the only real eigenvalues an orthogonal matrix could have, we even have λ−1 = λ.
Hence (

A 0
0 B

)
· ι(0) =

(
A 0
0 B

)
· (e1 : eq+1) = (λe1 : λeq+1) = ι(0),

hence KM fixes ι(0).
“⊆”: By Proposition 3.2.6(e), Q′ is the normaliser of q in G, so it suffices to show that
Q normalises q. Let ξ ∈ q, and g ∈ Q, then

exp(tAd(g)(ξ)) · ι(0) = g exp(tξ)g−1ι(0) = ι(0),

for all t, hence Ad(g)(ξ) ∈ q as well. Thus, Q normalises q, and hence Q ⊆ Q′.

3.3. Point Configurations
In order to substantiate the claim made before Example 1.2.2, we need to investigate the
structure (as G-sets) of spaces of configurations of n points in G/Q ∼= R̂p,q. From the
example (and the subsequent ones), we can already see that we can’t expect our n-point
functions to be defined on all of (G/Q)n, because we need all the x2

ij to be nonzero
(among other things) for ι(x1), . . . , ι(xn). For general configurations of points we want
the following:

Definition 3.3.1. A tuple of n points (x1, . . . , xn) with x ∈ R̂p,q is said to be in general
position if xi = q(vi) where the vectors v1, . . . , vn ∈ Rp+1,q+1 are linearly independent,
but no pair of them is orthogonal. (q : Rp+1,q+1 \{0} → Pd+1(R) is the projectivisation.)

Write
GP(R̂p,q, n) = GP(G/Q, n)

for the set of n-tuples of points in general position.

The reason why we use this weird-looking condition of non-orthogonality is that it
functions as a generalisation for “not being lightlike (isotropically) separated”. In par-
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ticular, we have

η


1 − η(x, x)

2x
1 + η(x, x)

,
1 − η(y, y)

2y
1 + η(y, y)


 = (1 − η(x, x))(1 − η(y, y)) + 4η(x, y) (3.1)

− (1 + η(x, x))(1 + η(y, y))
= 4η(x, y) − 2η(x, x) − 2η(y, y)
= −2η(x− y, x− y), (3.2)

so the inner product is nonzero precisely when x− y is non-isotropic.

Corollary 3.3.2. G acts naturally on GP(G/Q, n).

Proof. G preserves the inner product on Rp+1,q+1, hence the non-orthogonality is pre-
served. Similarly, G acts by means of injective maps, so linear independence is also
preserved.

Proposition 3.3.3. The action of G on GP(G/Q, 2) is transitive.

Proof. Let (x, y) ∈ GP(G/Q, 2). Pick g ∈ G so that g ·x = ∞. Let v ∈ Rp+1,q+1 be such
that g · y = q(v). Then

v =

 v0
v

vd+1


is not orthogonal to (1, 0,−1)T . This means that

0 ̸= η(v, (1, 0,−1)T ) = v0 + vd+1.

Let u := v
v0+vd+1

, then (cf. proof of Proposition 3.2.1) q(v) = ι(u) and we have

exp(−u · P ) · q(v) = q


1 − u2

2 uT
• −u2

2
−u• 1 −u•

u2

2 −uT
• 1 + u2

2


1 − u2

2u•

1 + u2




= q

1
0
1


exp(−u · P ) · ∞ = q


1 − u2

2 uT
• −u2

2
−u• 1 −u•

u2

2 −uT
• 1 + u2

2


 1

0
−1




= q

 1
0

−1


(interpreting the column vector u to equal the matrix u•), so that exp(−u · P )g(x, y) =
(∞, ι(0)).
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Proposition 3.3.4. The stabiliser of (ι(0),∞) ∈ GP(G/Q, 2) is MA.

Proof. Write H ≤ G for the stabiliser we’re looking for. Let w ∈ G be such that
w · ι(0) = ∞, then

H =
{
g ∈ G

∣∣∣ g ∈ Q,w−1gw ∈ Q
}

= Q ∩ wQw−1.

Pick w ∈ K diagonal with ±1 entries, say w = diag(w0, . . . , wd+1), so that w0 = −wd+1.
(If q+1 is odd and > 1, we can pick A = rird+1, the reflexion along ei, for p < i < d+1;
if q = 0, we can pick w = r0rd.)

In any case we have we0 = λe0 and wed+1 = −λed+1, so that

Ad(w)(D0) = wD0w = −D0.

Furthermore, all Di (i > 0) are either being sign-flipped or not. The upshot is that
Ad∗(w)(Γ) = −Γ. As a consequence, wNw = N . Furthermore, by Proposition 3.2.6(a),
MA = ZG(a), so that if g ∈ MA we have

Ad(wgw)(D0) = − Ad(wg)(D0) = − Ad(w)(D0) = D0,

so that wgw ∈ MA as well. This shows that wMAw = MA. Consequently, wQw =
MAN . Evidently, we have MA ⊆ H = MAN ∩MAN .

Let g = man = m′a′n ∈ H, then

n = a′−1m′−1man ∈ N ∩Q,

which is trivial by Proposition 3.2.6(h). Thus, H ⊆ MA as well.

Corollary 3.3.5. As G-sets we have GP(G/Q, 2) ∼= G/MA.

Corollary 3.3.6. Let n ≥ 2 and (x1, . . . , xn) ∈ GP(G/Q, n), then there exists g ∈ G
such that

g · x1 = ι(0), g · x2 = ∞, g · xi = ι(pi) (2 < i ≤ n)
where p3, . . . , pn ∈ Rp,q are linearly independent and no pi − pj is isotropic (in other
words: none of the pi are lightlike separated), and also no pi is isotropic (i.e. none of
the pi is lightlike).

Proof. Since the property of being in general position extends to subsets, the points
x1, x2 are in general position. Hence by Proposition 3.3.3, there is g ∈ G such that
g · x1 = ι(0), g · x2 = ∞. Since all the g · xi (i > 3) are not lightlike separated from
g · x2 = ∞, we can use the same argument as in the proof of Proposition 3.3.3 to see
that g · x3, . . . , g · xn are all contained in ι(Rp,q) and hence can be written uniquely as
g · xi = ι(pi).

By definition of general position we know that the vectors1
0
1

,
 1

0
−1

,
1 − η(pi, pi)

2pi

1 + η(pi, pi)


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are all linearly independent. This is equivalent to all pi are linearly independent.
Lastly, we need those same vectors to all be pairwise non-orthogonal. Using (3.2) we

see that this implies that all the pi − pj are non-isotropic, as well as the pi = pi − 0.

Since this thesis will be almost exclusively concerned with 4-point functions, let’s look
at configurations of 4 points more closely.

Proposition 3.3.7. Define u, v : GP(G/Q, 4) → R by

u(q(v1), . . . , q(v4)) := η(v1, v2)η(v3, v4)
η(v1, v3)η(v2, v4) ,

v(q(v1), . . . , q(v4)) := η(v1, v4)η(v2, v3)
η(v1, v3)η(v2, v4) .

Both functions are well-defined and smooth, and for ι(x1), . . . , ι(x4) they reduce to the
well-known expressions for the cross-ratios from e.g. [PRV19, Section III.C.3].

Proof. First-off note that the expressions defining u, v are invariant under independently
rescaling v1, v2, v3, v4 because the RHS is a homogeneous function of degree 0 in all of
them. Thus the function definition makes sense. That (q(v1), · · · , q(v4)) ∈ GP(G/Q, 4)
implies that η(v1, v3)η(v2, v4) ̸= 0 (because neither v1, v3 nor v2, v4 are orthogonal).
Thus, u, v are well-defined and smooth because q is a quotient map.

For the well-known expressions, recall (3.2). If we replace every occurrence of η(vi, vj)
in our definition with −2η(xi − xj , xi − xj), all factors of −2 will cancel, and leave us
with the familiar expression.

This way it becomes trivial to also evaluate the cross-ratios at infinity (without having
to take a limit first):

u(ι(0),∞, ι(x), ι(y)) = −2η((1, 0, 1), (1, 0,−1))η(x− y, x− y)
−2η(x, x)η((1 − η(y, y), 2y, (1 + η(y, y))), (1, 0,−1))

= −4η(x− y, x− y)
−4η(x, x)

= η(x− y, x− y)
η(x, x)

v(ι(0),∞, ι(x), ι(y)) = η(y, y)
η(x, x) .

And now for the all-important question, what G-orbits does GP(G/Q, 4) have? There
are two ways of approaching this:
On one hand, we have

GP(G/Q, 4) ⊆ GP(G/Q, 2)2 ∼= (G/MA)2

as G-sets, so that

GP(G/Q, 4)/G ⊆ (GP(G/Q, 2)2)/G ∼= (G/MA)2/G ∼= MA\G/MA.
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This means, we can view GP(G/Q, 4)/G as isomorphic to MA\U/MA, where U ⊆ G is
an open set that is invariant under left and right multiplication by MA.

On the other hand, we can proceed geometrically.
Lemma 3.3.8. (a) Let v1, . . . , vd ∈ Rp,q be positively oriented with η(vi, vj) = ηij,

then there is m ∈ SO(p, q) with mei = vi.

(b) Let v1, . . . , vd ∈ Rp,q be positively oriented with η(vi, vj) = ηij for i = 2, . . . , d − 1
and

η(v1, v1) = 0, η(vd, vd) = 0, η(v1, vd) = −2,
then there is m ∈ SO(p, q) such that mei = vi for 2 ≤ i ≤ d− 1 and

m(e1 + ed) = v1, m(−e1 + ed) = vd.

Proof. (a) Take m to be the matrix whose columns are v1, . . . , vd. Then positive
orientation implies that the determinant is 1, and “orthonormality” implies that
the matrix lies in O(p, q).

(b) Apply the previous case to
v1 − vd

2 , v2, . . . , vd−1,
v1 + v2

2 .

This basis is positively oriented because the matrix1 0 −1
0 1 0
1 0 1


has determinant 2, and the inner products are correct. Then we have

m(±e1 + ed) = ±v1 − vd

2 + v1 + vd

2 = v1/d,

which is what we wanted.

Proposition 3.3.9. We have

GP(G/Q, 4)/G = Xtt ⊔Xtl ⊔Xts ⊔Xst ⊔Xsl ⊔Xss,

where Xστ ’s principal domain is

{(ι(0),∞, ι(x), ι(y)) | (x, y) ∈ Yστ } (σ ∈ {s, t} , τ ∈ {s, l, t})
where

Ytt = {(ed, aed + bed−1) | b > 0}
Ytl = {(ed, aed + e1 + ed−1) | a ̸= 0, 1}
Yts = {(ed, aed + be1) | b > 0, b ̸= |a|, |a− 1|}
Yst = {(e1, ae1 + bed) | b > 0, b ̸= |a|, |a− 1|}
Ysl = {(e1, ae1 + e2 + ed) | a ̸= 0, 1}
Yss = {(e1, ae1 + be2) | b > 0} .
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For q ≤ 1 we take instead Ytt = Ytl = ∅, and for q = 0, we also take Yts = Yst = Ysl = ∅.

Proof. Let (x1, x2, x3, x4) ∈ GP(G/Q, 4). Since we’re studying G-orbits, assume without
loss of generality that

(x1, x2, x3, x4) = (ι(0),∞, ι(x), ι(y)),

which is possible by Corollary 3.3.6. Since by Proposition 3.3.4, the pair (ι(0),∞) is
stabilised by MA, we have to classify the orbits of

{(x, y) ∈ Rp,q, linearly independent, η(x, x), η(y, y), η(x− y, x− y) ̸= 0}

under MA, and these will turn out to be the Y ’s.
Note that ±1 0 0

0 m 0
0 0 ±1

 · ι(x) = ι(±mx)

for m ∈ SO(p, q) ⊆ M (where, depending on the parity of p, q we may have to choose
−1 instead of +1 if m ̸∈ SO(p, q)0), and that

exp(αD0) · ι(x) =

cosh(α) 0 sinh(α)
0 1 0

sinh(α) 0 cosh(α)

 · ι(x) = ι(exp(−α)x).

This means that what remains of our G-action can be used to rescale x, y (together) and
to apply a transformation in SO(p, q).

From Corollary 3.3.6 we know that x is not isotropic, so consider

ỹ := y − η(x, y)
η(x, x)x.

Evidently, η(x, ỹ) = 0. We now distinguish cases based on η(x, x) and η(ỹ, ỹ).

x timelike, ỹ timelike We can find v1, . . . , vd−2 so that

v1, . . . , vd−2,
ỹ

|η(ỹ, ỹ)| ,
x√

|η(x, x)|

is a positively oriented ONB, then by Lemma 3.3.8 there is m ∈ SO(p, q) such that

med+1 = x√
|η(x, x)|

, med = ỹ

|η(ỹ, ỹ)| .

Multiplying by
√

|η(x, x)| gives ma ∈ MA such that

x = maed+1, y ∈ ma span {ed, ed+1} ,

where the coefficient in front of ed is positive.
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x time/space-like, ỹ time/space-like It works similarly in these cases, just tweaking
the position inside the basis a bit.

x timelike, ỹ lightlike For this let z ⊥ x be an isotropic vector that’s not orthogonal to
ỹ (e.g. take a timelike unit vector ei with η(ỹ, ei) ̸= 0, project it onto (Rx)⊥, and
take ỹ’s reflexion along it). Then we can apply Lemma 3.3.8(b) to

ỹ√
|η(x, x)|

, other vectors, x√
|η(x, x)|

,
−2z
η(z, ỹ)

√
|η(x, x)|.

We see that there is ma ∈ MA such that

ma · (e1 + ed) = ỹ, ma · ed−1 = x.

Permuting around the unit vectors (all the while keeping our elements in MA),
transforms out x, y to be contained in Ytl.

x spacelike, ỹ lightlike Analogous.

We see that GP(G/Q, 4)/G is a union of 1- or 2-dimensional manifolds. In fact,
considering the points (e1, e2 + ted), it is not hard to see that Ysl lies in the closures of
Yss and Yst because e2 + ted = ỹ is spacelike for t < 1, lightlike for t = 1, and timelike for
t > 1. Similarly, we can use (ed, e1 + ted−1) to see that (for q > 1) Ytl lies in the closures
of Yts and Ytt. And in fact, using the cross-ratios from Proposition 3.3.7, we can turn

Y1 := Xst ∪Xsl ∪Xss, Y2 := Xtt ∪Xtl ∪Xts

into smooth manifolds. Furthermore, the map

(ι(0),∞, ι(x), ι(y)) 7→ η(x, x)
|η(x, x)|

induces a continuous map GP(G/Q, 4)/G → {±1}, which assumes the value −1 on the
first such manifold, and 1 on the other, so the subsets X1, X2 are in fact clopen. They
both have four connected components each: the ones where x−y, y are time- or spacelike.

This shows that GP(G/Q, 4)/G is a 2-dimensional manifold with eight connected
components, corresponding to the sign of η(x, x), η(x − y, x − y), and η(y, y) (if g = 1,
the connected component associated to u, v > 0 in the x timelike plane is smaller; and
if g = 0, all vectors can only have positive inner product with themselves, so then only
one connected component remains: only the Yss part of x spacelike, u, v > 0).

Proposition 3.3.10. The permutation action of S4 on GP(G/Q, 4)/G, as described by
two planes of cross-ratios, is as follows:

(1234) · (u, v) = (v, u), (12) · (u, v) =
(
u

v
,

1
v

)
where (1234) maps the v < 0 components of Xi to X3−i (i = 1, 2), and the v > 0
components of Xi to Xi. The cycle (12) leaves X1, X2 invariant.
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Proof. Determining the behaviour of (1234), (12) on the cross-ratios is a simple matter
of evaluating u, v of

(ι(y), ι(0),∞, ι(x)), (∞, ι(0), ι(x), ι(y)).

Applying w to both sides gives us

(ι(I(y)),∞, ι(0), ι(I(x))), (ι(0),∞, ι(I(x)), ι(I(y)))

(cf. Section B.3 for I(x)). Translating by −I(y) on the left gives us that the plane that
(1234) · (ι(0),∞, ι(x), ι(y)) resides in is determined by whether y is time- or spacelike.
Similarly, the plane of (12) · (ι(0),∞, ι(x), ι(y)) is determined whether or not x is time-
or spacelike.

In particular, for y > 0, the lengths η(x, x), η(y, y) have the same sign, so (1234)
doesn’t change between planes, and for y < 0, they have a different sign, making its
action change the planes. (12), on the other hand, doesn’t switch planes at all.

Corollary 3.3.11. The maps that move between the two pictures is given by

MA(Y1 ∪ Y2) → U, (x, y) 7→ exp(y · P )w exp(I(x− y) · P )
ψ : U 7→ GP(G/Q, 4)/G, g 7→ G(MAN,wMAN, gMAN, gwMAN)

Since the fundamental domains Yστ are disconnected from each other, we shall tackle
them separately. Since Ytl, Ysl are only one-dimensional and their orbits are contained
in the closures of those of the others, we are going to ignore these domains for the time
being. Define

ξtt(a, b) := exp(Pd)w exp(aPd + bPd−1)
ξts(a, b) := exp(Pd)w exp(aPd + bP1)
ξst(a, b) := exp(P1)w exp(aP1 + bPd)
ξss(a, b) := exp(P1)w exp(aP1 + bP2),

then

u(ψ(ξtt(a, b))) = 1
(a+ w0wd)2 + b2 v(ψ(ξtt(a, b))) = a2 + b2

(a+ w0wd)2 + b2

u(ψ(ξts(a, b))) = 1
(a+ w0wd)2 − b2 v(ψ(ξts(a, b))) = a2 − b2

(a+ w0wd)2 − b2

u(ψ(ξst(a, b))) = 1
(a− w0w1)2 − b2 v(ψ(ξst(a, b))) = a2 − b2

(a− w0w1)2 − b2

u(ψ(ξss(a, b))) = 1
(a− w0w1)2 + b2 v(ψ(ξss(a, b))) = a2 + b2

(a− w0w1)2 + b2 (3.3)

37



4. Induced Representations
In Section 1.2 we saw that the conformal Ward identities (that are satisfied by correlation
functions and conformal blocks) can be phrased as co- and invariance conditions on
functions or distributions defined on Gn (for n-point functions). In that context we also
mentioned induced representations, which we shall have a closer look at now.
Definition 4.0.1. Let (G,K, θ,B) be a reductive Lie group, let MAN = Q ≤ G be
a parabolic subgroup. Let (π, V ) be a finite-dimensional representation that is unitary
when restricted to K ∩M (with respect to the inner product ⟨·⟩), and let ν ∈ a∗.

Extend (π, V ) to a representation of Q by having

π(man)v = π(m) exp(ν(log(a)))v.

Define

IndG
Q(π) :=

{
f : G → V

∣∣∣ ∀g ∈ G, q ∈ Q : f(gq) = π(q)−1f(g), f |K ∈ L2(K;V )
}
,

with (g · f)(x) := f(g−1x).
Proposition 4.0.2. The representation space IndG

Q(π) is a Hilbert space, and the action
by G is strongly continuous.

There are three equivalent ways of viewing IndG
Q(π): the definition is called the induced

picture. In addition, there is also the compact and the noncompact picture.
Theorem 4.0.3 (Equivalence with Compact Picture). The map

IndG
Q(π) →

{
f ∈ L2(K;V )

∣∣∣ ∀g ∈ K, q ∈ K ∩M : f(gq) = π(q)−1f(g)
}

defined by restriction is a unitary equivalence of G-modules.

Proof. G acts on f in the right set as

(g · f)(k) = exp(ν(−α))π(m′)−1f(k′)

where g−1k = k′m′ exp(α)n′ ∈ G = KQ (k′ ∈ K,m′ ∈ M,α ∈ a, n′ ∈ N). Since f is
equivariant with respect to K ∩M , the ambiguity in this decomposition doesn’t matter.
From this definition, it is clear that the restriction map intertwines G-representations.

For unitarity note that the L2-inner product on K is also the inner product that we
chose on IndG

Q(π). It remains to see surjectivity. Let f ∈ L2(K;V ) be K∩M -equivariant.
Define f ′ : G → V by

f ′(km exp(α)n) = π(m)−1 exp(−ν(α))f(k).

This function is well-defined because of the equivariance of f , lies in IndG
Q(π), and

restricts to f .
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Note that the representation space in the noncompact picture is independent of ν;
only the representation depends on ν.

Theorem 4.0.4 (Equivalence with Non-Compact Picture). Let H : G → a be such that
exp(H(kman)) = a for k ∈ K,man ∈ MAN and note that

∆Q(q) = exp(2ρA(H(q)))

([Kna96, equation (8.38)]) where ρA is half the sum of positive roots in the restricted
root system of g with respect to a. Define

δ : G → R, g 7→ exp(2(Re(ν) − ρA)(H(g))),

then restriction to N is a unitary equivalence of G-modules between

IndG
Q(π) → L2(δ · µN ;V ).

Proof. We will focus on unitarity and then just define the G-action so that it intertwines.
Let u, v ∈ IndG

Q(π), define

f : G → C, g 7→ ⟨u(g), v(g)⟩δ(g)

(taking the inner product in V ). This function satisfies

f(kman) = ⟨u(kman), v(kman)⟩ exp(2(Re(ν) − ρA) log(a))
= ⟨π(man)−1u(k), π(man)−1v(k)⟩ exp(2(Re(ν) − ρA) log(a))
= exp(−2 Re(ν) log(a))⟨u(k), v(k)⟩ exp(2(Re(ν) − ρA) log(a))

= 1
∆Q(man)⟨u(k), v(k)⟩

= f(k)
∆Q(man) ,

so in particular, for n = kman we have

f(n) = f(k) exp(−2ρA(H(n))).

In particular, this also shows that f is K ∩M -invariant.
By [Kna96, proposition 8.46], we thus obtain∫

f dµK =
∫
f dµN ,

and hence that the inner products of u, v coincide, whether they are taken over K with
µK or over N with δ · µN .

For surjectivity let f ∈ L2(δ · µN ;V ) and define

f ′(nman) := π(man)−1f(n)

on NQ and 0 everywhere else. Then f ′ is equivariant almost everywhere and its K-
norm is finite because of the equality of inner products. Consequently, f ′ ∈ IndG

Q(π) and
restricts to f .
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Instead of requiring IndG
Q(π) to be made up of L2-functions, we can also require its

elements to be smooth functions G → V or V -valued distributions on G that satisfy
the equivariance condition. It is sound to still refer to these different vector spaces as
“the same representation” because if we consider their sets of K-finite vectors (their
Harish-Chandra modules){

f ∈ IndG
Q(π)

∣∣∣ dim(span(K · f)) < ∞
}
,

they are isomorphic as (U(L),K)-modules (L = g ⊗ C).
Considering smooth functions or derivations instead of L2-functions means that our

representation spaces are no longer Hilbert spaces but complete locally convex topologi-
cal vector spaces. However, it turns out (see Appendix A.3) that we have more than that
because they are also nuclear spaces. As such, there is a canonical notion of complete(d)
tensor product between them and we have

Proposition 4.0.5. For semisimple Q-modules (V1, π1), . . . , (Vn, πn) we have

IndG
Q(π1) ⊗ · · · ⊗ IndG

Q(πn) ∼= IndGn

Qn(π1 ⊗ πn)

where we Ind can refer to the Hilbert space, the smooth, and the distributional version.

Proof. Note that (Gn,Kn, θ⊗n, B⊗n) is a reductive group, with Qn ≤ Gn parabolic.
Similarly, π1 ⊗ · · · ⊗ πn is a semisimple Qn-module.

Next, we have L2(G;V )⊗n ∼= L2(Gn;V ⊗n) as well as C∞(G;V )⊗n ∼= C∞(V n;V ⊗n)
and

(D(G;V )′)⊗n ∼= D(Gn;V ⊗n)′,

and the equivariance condition survives taking the tensor product.

4.1. n-Point Functions
Back to our concrete choice of G. As established in the introduction, n-point functions
and conformal blocks satisfy the conformal Ward identities and are therefore G-invariant
elements of IndGn

Qn(π⊗n) (distributions). We expect them to be regular (i.e. a smooth
functions) on GP(G/Q, n).

Let G×Qn act on Gn by

(g, q1, . . . , qn) · (g1, . . . , gn) := (gg1q
−1
1 , . . . , ggnq

−1
n )

and on V1 ⊗ · · · ⊗ Vn or V ⊗n by

(g, q1, . . . , qn) · (v1 ⊗ · · · ⊗ vn) := (q1 · v1) ⊗ · · · ⊗ (qn ⊗ vn).

Definition 4.1.1. Let Un ⊆ Gn be such that Un/Q
n ∼= GP(G/Q, n). It, too, is evidently

a G×Qn-set.
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In this language, our solutions (in n variables) of the conformal Ward identities are
functions f : Un → V1 ⊗ · · · ⊗ Vn such that

f(g · p) = g · f(p)

for all p ∈ Un and g ∈ G × Qn. This reads a lot like the kind of covariance con-
dition satisfied by sections of a vector bundle associated to the “principal bundle”
Un → GP(G/Q, n)/G. Problem is that Un → GP(G/Q, n)/G is not a principal bundle
because the action has stabilisers:

Lemma 4.1.2. For n > 2, the G × Qn-set Un has stabiliser algebras isomorphic to
soC(d+ 2 − n).

Proof. Evidently, the action of Qn on Un is free, so it remains to find the stabiliser
of any element of GP(G/Q, n). By Corollary 3.3.6, any element of GP(G/Q, n) lies in
the same orbit as (ι(0),∞, ι(x3), . . . , ι(xn)). The points ι(0),∞ are stabilised by MA
by Proposition 3.3.4. Thus, our stabiliser is the subgroup of MA stabilising x3, . . . , xn.
Since A scales the vectors, no element of A stabilises x3, . . . , xn. Let m ∈ M be contained
in the stabiliser. Since x3, . . . , xn are all non-null and linearly independent, we can
do Gram–Schmidt orthogonalisation and find v3, . . . , vn ∈ span {x3, . . . , xn} that are
an orthonormal basis (with η(vi, vi) = ±1, as we’re working in indefinite signature
generally). Thus, there exists g ∈ M such that gvi = emi , so that

Stab(x3, . . . , xn) = Stab(v3, . . . , vn) = g−1 Stab(em3 , . . . , emn)g.

The middle stabiliser group has complexified Lie algebra soC(d+2−n), as fixing n−2 unit
vectors implies that we’re effectively dealing with (d+ 2 −n) × (d+ 2 −n)-matrices.

This means, when talking about G×Qn-equivariant functions Un → V1 ⊗Vn, we have
to be wary of nontrivial stabilisers. If we still want to phrase this in terms of vector
bundles, there is no general overall mechanism we can use like in the case of free actions.
Because of that we’re now making an assumption:

Assumption 4.1.3. The set

Ẽ(V1, . . . , Vn) :=
{

(x, v)
∣∣∣ x ∈ Un, v ∈ (V1 ⊗ · · · ⊗ Vn)Stab(x)

}
is a manifold and a smooth G × Qn-set (combining the actions on Qn and the tensor
product of the Vi) whose orbit space E(V1, . . . , Vn) is also manifold.

Furthermore, if ϕi : Vi → Wi are Q-intertwiners, the induced map

Ẽ(V1, . . . , Vn) → Ẽ(W1, . . . ,Wn), (x, v) 7→ (x, (ϕ1 ⊗ · · · ⊗ ϕn)(v))

is smooth and descends to a smooth map ϕ : E(V1, . . . , Vn) → E(W1, . . . ,Wn). If all ϕi

are injective, ϕ is an immersion, if all ϕi are surjective, ϕ is a submersion.

If it turns out to be false, it doesn’t change the gist of the statements that rely on it
and can likely be remedied by removing some closed submanifolds of lower dimension.
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Theorem 4.1.4. The solutions (in n variables) to the conformal Ward identities are pre-
cisely the sections of a vector bundle over GP(G/Q, n)/G with typical fibre (V ⊗n)soC(d+2−n).

Proof. Under Assumption 4.1.3, both E(V, . . . , V ) and E(0, . . . , 0) are manifolds, the
latter being GP(G/Q, n)/G. The projection map G×Qn(x, v) 7→ G×Qn ·x descends to
a smooth surjective submersion E(V, . . . , V ) → GP(G/Q, n)/G whose fibres are isomor-
phic to (V ⊗n)Stab(x) for any x ∈ Un. Furthermore, since the projector from the trivial
bundle V ⊗n to E(V, . . . , V ) is smooth, E(V, . . . , V ) is a vector bundle.

The sections of E(V, . . . , V ) → GP(G/Q, n)/Q correspond to smooth functions gn :
Un → V ⊗n satisfying

f(gg1p
−1
1 , . . . , ggnp

−1
n ) = f((g, p1, . . . , pn) · (g1, . . . , gn))

= (p1, . . . , pn)f(g1, . . . , gn)

for all (g, p1, . . . , pn) ∈ G × Qn and (g1, . . . , gn) ∈ Un. That’s precisely the requirement
of Equations 1.3 and 1.4.

Corollary 4.1.5. The space of 2-point solutions to the Ward identities for the ir-
reducible Q-modules V1, V2 is one-dimensional precisely when V1, V2 have related M -
representations and the same scaling dimension.

The space of 3-point solutions to the Ward identities for the irreducible Q-modules
V1, V2, V3 is also finite-dimensional.

Proof. For n = 2, the set GP(G/Q, 2)/G comprises just one point, so pick the singleton
(ι(0),∞) as fundamental domain. By Proposition 3.3.4, its stabiliser is{

(ma,ma, cw(m)a−1)
∣∣∣ ma ∈ MA

}
.

This group has a nontrivial set of invariants in V1 ⊗ V2 iff V1, V2 have the same scaling
dimension and if (V1⊗Ṽ2)M is nontrivial (Ṽ2 has the w-conjugated action). In particular,
since V1, V2 are finite-dimensional irreducible m-modules, so by Schur’s lemma, we have

(V1 ⊗ Ṽ2)m ∼=
{
C V ∗

1
∼= Ṽ2

0 otherwise
.

For n = 3, the set GP(G/Q, 3)/G comprises either one or two points: by Corol-
lary 3.3.6, any orbit contains an element of the shape (ι(0),∞, ι(x)) with x2 ̸= 0. Then
x can be rotated and rescaled to be a standard unit vector of length squared either 1 or
−1. Consequently, if q = 0, the orbit space comprises one point; if q = 1, it comprises
two points. Thus, the space of sections is either

(V1 ⊗ V2 ⊗ V3)SO(p−1)

(for q = 0) or
(V1 ⊗ V2 ⊗ V3)SO(p−1,q) ⊕ (V1 ⊗ V2 ⊗ V3)SO(p,q−1).
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Corollary 4.1.6. The space of 4-point solutions to the Ward identities is the space of
sections of a vector bundle of typical fibre (V ⊗4)soC(d−2) over a two-dimensional manifold.

Proof. By Proposition 3.3.9, the manifold GP(G/Q, 4)/G is two-dimensional.

Lemma 4.1.7. The space of 4-point solutions to the Ward identities with the reps
(π1, V1), . . . , (π4, V4) is in linear bijection to

Ward(W ) := {f ∈ C∞(U ;W ) | ∀x ∈ U, p, q ∈ MA : f(pxq) = p · f(x) · q}

where W = V1 ⊗ · · · ⊗ V4 is an MA-bimodule via

p · v · q := π1(p) ⊗ π2(cw(p)) ⊗ π3(q−1) ⊗ π4(cw(q−1))v.

Recall that U ⊆ G was defined before Lemma 3.3.8 to consist of those elements g ∈ G
such that

MAgMA ≈ G(MA, gMA) ∈ (G/MA)2/G ≈ G(Q,wQ, gQ, gwQ) ∈ GP(G/Q, 2)2/G

= G(ι(0),∞, g · ι(0), g · ∞)

is an orbit of configurations in general position.

Proof. Define

χ : {sol. to Ward identities} → Ward(W ), f 7→ (g 7→ f(1, w, g, gw)).

This is well-defined because for p, q ∈ MA we have

χ(f)(pgq) = f(1, w, pgq, pgqw) = f(p−1, p−1w, gq, gqw)
= f(p−1, wcw(p−1), gq, gwcw(q−1))
= π1(p) ⊗ π2(cw(p)) ⊗ π3(q−1) ⊗ π4(cw(q−1))f(1, w, g, gw)
= p · χ(f)(g) · q.

For injectivity let χ(f) = 0, then f(1, w, g, gw) = 0 for all g ∈ G. Let p ∈ U4. By
Corollary 3.3.6, there is g ∈ G such that (g · p)/Q4 = (ι(0),∞, ι(x), ι(y)). Furthermore,
since (ι(x), ι(y)) ∈ GP(G/Q, 2), there is h ∈ G such that h(ι(x), ι(y)) = (ι(0),∞). This
shows that

gpQ4 = (Q,wQ, h−1Q, h−1wQ)
or that

p = (g−1q1, g
−1wq2, g

−1h−1q3, g
−1h−1wq4)

for q1, . . . , q4 ∈ Q, so that

f(p) = f(g−1q1, g
−1wq2, g

−1h−1q3, g
−1h−1wq4)

= f(q1, wq2, h
−1q3, h

−1wq4)
= π1(q−1

1 ) ⊗ π2(q−1
2 ) ⊗ π3(q−1

3 ) ⊗ π4(q−1
4 )f(1, w, h−1, h−1w)

= 0.
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For surjectivity let h ∈ Ward(W ), let (g1, . . . , g4) ∈ U4, and let g, g′ ∈ G, p1, p2, p3, p4 ∈
Q such that (g1, g2) = (gp1, gwp2) and

g−1g3 = g′p3, g−1g4 = g′wp4.

Then define
f(g1, g2, g3, g4) := π1(p−1

1 ) ⊗ · · · ⊗ π4(p−1
4 )h(g′).

This is well-defined because the ambiguities in the choice of g, g′ are resolved by h’s
biequivariance. Then χ(f) = h.

Lemma 4.1.8. A function f ∈ Ward(V ) is uniquely determined by the four functions
f ◦ ξστ for σ, τ ∈ {s, t}.

Proof. By Proposition 3.3.9 and some considerations afterwards, the set Xss ∪ Xst ∪
Xts ∪ Xtt is dense in GP(G/Q, 4)/G. Since ψ(im(ξστ )) is a G-fundamental domain for
Xστ , we can apply ψ−1 and obtain that the closure of the MA×MA-orbit of the union
of the images of the ξστ is all of U . Consequently, f ’s continuity and biequivariance
ensure that f is determined by its values on these four fundamental domains.

Therefore, for f ∈ Ward(V ) define

fστ := f ◦ ξστ σ, τ ∈ {s, t} .

Proposition 4.1.9. Let σ, τ ∈ {s, t}. Then the image of ξστ has the common stabiliser

Stab(ξστ (a, b)) ∼=


SO(p, q − 2) στ = tt

SO(p− 1, q − 1) στ ∈ {st, ts}
SO(p− 2, q) στ = ss

(where the isomorphism is effected by embedding into MA as “obvious” block matrices
in M , and then by embedding into MA×MA via p 7→ (p, cw(p))).

Proof. The image of ξστ is the image of Yστ under the first isomorphism in Corol-
lary 3.3.11. Therefore,

(g, g′) ∈ Stab ⇔ g′ = cw(g)&g ∈ Stab(Yστ ),

implying that g ∈ MA such that g fixes the two standard unit vectors used in the
definition of Yστ .

This shows that up to boundary conditions for Yσl, the restriction fστ can vary freely
in the vector space

V Stab(Yστ ).

As (3.3) establishes, we can also use u, v instead of a, b to parametrise fστ , which is
what we will do from now on.
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4.2. Conformal Blocks
With this last equivalence established, we will refer to Ward(V ) as the space of solutions
to the conformal Ward identities, with respect to the MA-bimodule V (regardless of
whether V came about in the manner described in Lemma 4.1.7). Now we’d like to
find out how to find conformal blocks within Ward(V ). In Section 1.6, we introduced
conformal blocks as solutions to both the conformal Ward identities 1.3 and 1.4 and the
Casimir equation (1.8). In other words: conformal blocks are elements of Ward(V ) that
diagonalise a particular action of Z(U(L)), where L = g ⊗ C.

Lemma 4.2.1. Let V be an MA-bimodule, then C∞(U ;V ) is a (U(L),MA × MA)-
module, where MA×MA acts on U(L) by

(p, p′) · q := Ad(p)(q),

where Ad is the continuation of the adjoint representation to all of U(L).

Proof. Let g act by
(ξ · f)(x) := d

dt f(exp(−tξ)x)
∣∣∣∣
t=0

,

i.e. by right-invariant vector fields, and MA×MA by

((p, p′) · f)(x) := p · f(p−1xp′) · p′−1.

Let p, p′ ∈ MA and ξ ∈ g, then

((p, p′) · (ξ · ((p, p′)−1 · f)))(x) = p · (ξ · ((p, p′)−1 · f))(p−1xp′) · p′−1

= d
dt p · ((p, p′)−1 · f)(exp(−tξ)p−1xp′) · p′−1

∣∣∣∣
t=0

= d
dt f(p exp(−tξ)p−1x)

∣∣∣∣
t=0

= d
dt f(exp(−tAd(p)(ξ))x)

∣∣∣∣
t=0

= (Ad(p)(ξ) · f)(x),

so the actions of g and MA×MA are indeed compatible in the way claimed. Through
complexification and the universal property of U(L), this then also holds for U(L) and
MA×MA.

Corollary 4.2.2. Ward(V ) is a U(L)MA-module, in particular a Z(U(L))-module.

Proof. As Ward(V ) is the space ofMA×MA-invariants of the (U(L),MA×MA)-module
C∞(U ;V ), we can apply Lemma 2.1.3 and obtain the claim.

It turns out, in the situation of Lemma 4.1.7, i.e. V = V1 ⊗ · · · ⊗ V4 as vector spaces,
this Z(U(L)) action is precisely the one used in (1.8).
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Proof. Define the function

χ̃ : C∞(U4;V ) → C∞(U ;V ), f 7→ (g 7→ f(1, w, g, gw)),

which becomes the function χ from the proof of Lemma 4.1.7 when acting on G × Q4-
invariants. Then it suffices to show that it intertwines the g-actions

(ξ · f)(g1, . . . , g4) = d
dt f(g1, g2, exp(−tξ)g3, exp(−tξ)g4)

∣∣∣∣
t=0

on C∞(U4;V ) and
(ξ · f)(x) = d

dt f(exp(−tξ)x)
∣∣∣∣
t=0

on C∞(U ;V ). Then it also intertwines the L and U(L) and Z(U(L))-actions, in partic-
ular when restricted to G×Q4-invariant functions.

In order to show this intertwining property, note that

(ξ · χ̃(f))(x) = d
dt χ̃(f)(exp(−tξ)x)

= d
dtf(1, w, exp(−tξ)x, exp(−tξ)xw)

= (ξ · f)(1, w, x, xw)
= χ(ξ · f).

Definition 4.2.3. Let χ be the central character of a U(L)-module and let V be an
MA-bimodule. The solution f ∈ Ward(V ) to the conformal Ward identities is called a
χ-conformal block (with respect to V ) if it satisfies the Casimir equation

∀z ∈ Z(U(L)) : z · f = χ(z)f.

4.3. Spinorial Conformal Blocks
The Casimir equation is a system of differential equations of order at least two (as
so(d + 2,C) = L is simple), and the differential operator associated to the quadratic
Casimir element can be directly associated to the Laplacian on (G/Q)2 (i.e. on two
factors of GP(G/Q, 4)) with respect to a G-invariant metric.

This might lead one to wonder if there is also a way of having “the Dirac operator”
act on solutions to the conformal Ward identities. In particular, for the operator, we
will be following the approach of [Kos99].

Proposition 4.3.1. The map θ̃ : g → g defined by x 7→ η̃xη̃ for

η̃ = diag(−1, 1, . . . , 1,−1)

is an involutive Lie algebra automorphism making (m ⊕ a, g) into a symmetric pair.
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Proof. The diagonal matrices η, η̃ commute, hence θ̃ indeed maps g → g. Since η̃2 = 1,
our map is an involution and

θ̃([x, y]) = η̃xη̃η̃yη̃ − η̃yη̃η̃xη̃ =
[
θ̃(x), θ̃(y)

]
for x, y ∈ g, hence θ̃ is also a Lie algebra automorphism.

Now, let’s determine the eigenspaces of θ̃. We have

θ̃(Fµν) = η̃Fµν η̃ =
{
Fµν µ, ν ∈ {0, d+ 1}
−Fµν µ ∈ {0, d+ 1} &ν ∈ {1, . . . , d} or vice-versa

.

In other words: the 1-eigenspace consists of m ⊕ a and the −1-eigenspace consists of
n ⊕ n.

In [Kos99, section 1], the author discusses so-called representations of Lie type as
natural settings for his Dirac operator. These are orthogonal representations Y (there
called p) of a Lie algebra r, equipped with a way to make r⊕Y into a Lie algebra, where
r is a subalgebra that normalises Y (the adjoint action is given by the representation).
These requirements already specify

[·, ·]|r×r, [·, ·]|r×Y , [·, ·]|Y ×r,

so it remains to specify the restriction to Y × Y . In [Kos99, theorem 1.50], it is pointed
out that the restriction to Y × Y is uniquely specified by an element of (∧3 Y )r that
satisfies some extra conditions. We take r := m ⊕ a and Y := n ⊕ n. They form a
symmetric pair, and are hence of Lie type ([Kos99, theorem 1.59]). If, however, we
forgot for a second about the Lie structure we already know to exist on r ⊕ Y , we can
note that

Proposition 4.3.2. (∧3 Y )r = 0.

Proof. Since the tuple P1, . . . , Pd,K1, . . . ,Kd is a basis for Y , a basis for ∧3 Y is given
by

Pµ ∧ Pν ∧ Pρ, Pµ ∧ Pν ∧Kρ, Pµ ∧Kν ∧Kρ, Kµ ∧Kν ∧Kρ

where indices belonging to the same letter (K or P ) are assumed to be strictly decreasing.
Since the Pi,Ki also parametrise the eigenspaces of ad(D0) in Y , we expect the same in∧3 Y . Indeed, we have

ad(D0)(Pµ ∧ Pν ∧ Pρ) = −3Pµ ∧ Pν ∧ Pρ ad(D0)(Pµ ∧ Pν ∧Kρ) = −Pµ ∧ Pν ∧Kρ

ad(D0)(Pµ ∧Kν ∧Kρ) = Pµ ∧Kν ∧Kρ ad(D0)(Kµ ∧Kν ∧Kρ) = 3Kµ ∧Kν ∧Kρ.

We see that our basis indeed diagonalises ad(D0), and that 0 is not an eigenvalue of
ad(D0). Thus, the only element of ∧3 Y annihilated by ad(D0), and hence by r, is 0.
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In conclusion, there exists no other Lie algebra structure on r ⊕ Y that we could be
using here.

We now define A := Cℓ(Y ) ⊗ U(g) and consider the following embeddings of r:

αY : r ad−→ so(Y ) j−→ Cℓ(Y ) (4.1)
∆Y : r ∋ ξ 7→ 1 ⊗ ξ + αY (ξ) ⊗ 1 ∈ A,

where j is the Chevalley embedding from Proposition 2.2.11. If Y1, . . . , Y2d is an or-
thonormal basis of Y , the map αY can be given by

ξ 7→ 1
4

2d∑
i,j=1

B(ξ, [Yi, Yj ])YiYj .

Definition 4.3.3. Let Y1, . . . , Y2d ∈ Y be an orthonormal basis, then the element

D :=
2d∑

i=1
Yi ⊗ Yi ∈ A

is called the (cubic) Dirac operator.

Lemma 4.3.4. D is independent from the choice of basis.

Proof. Let X1, . . . , X2d be another orthonormal basis and let

Yi =
2d∑

i=1
aijXj ,

then

D =
2d∑

i=1
Yi ⊗ Yi

=
2d∑

i,j,k=1
aijaikXj ⊗Xk

=
2d∑

i,j=1
Xi ⊗Xj

2d∑
k=1

akiakj

=
2d∑

i,j=1
δijXi ⊗Xj

=
2d∑

i=1
Xi ⊗Xi.

Theorem 4.3.5. We have

D2 = 1 ⊗ Ωg − ∆Y (Ωr) + c

where Ωh for h ∈ {g, r} is the quadratic Casimir element of h with respect to the invariant
bilinear form B, and where c ∈ C is a constant.
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Proof. See [Kos99, theorem 2.13].

Proposition 4.3.6. The constant c from last theorem is equal to d2

8 .

Proof. By [Kos99, theorems 1.81 and 2.13] and using that v = 0, we have αY (Ωr) = c.
By Section B.6, this equals d2

8 .

In order to have D realistically be an operator, we’d like it to act on something, ideally
some solutions to Ward identities. For that we should start by constructing A-modules.
It’s not very surprising that A-modules can be obtained by considering S ⊗ V where S
is a Cℓ(Y )-module (e.g. a spin module) and V is a U(L)-module. For example, we could
consider C∞(U ;S ⊗ V ) where V is a vector space.

In order to talk about the Ward identities for such a space, we take V to be an MA-
bimodule, and would now like to establish an MA-bimodule structure on S ⊗ V in such
a way that this MA×MA-action is compatible with the Cℓ(Y )-action in a suitable way.

Recall that αY satisfies
[αY (ξ), v] = ad(ξ)(v)

in Cℓ(Y ), for ξ ∈ r, v ∈ Y . If αY lifts to a group homomorphism ϕY : MA → Pin(Y ),
this implies

ϕY (q)vϕY (q−1) = Ad(q)(v)

for q ∈ MA, which then also holds for the continuation of Ad(q) onto all of Cℓ(Y ).

Lemma 4.3.7. Let V be an MA-bimodule, S a Cℓ(Y )-module, then S⊗V can be turned
into a (Cℓ(Y ),MA×MA)-module by

Cℓ(Y ) ∋ p · (s⊗ v) := (p · s) ⊗ v

MA×MA ∋ (p, q) · (s⊗ v) := (ϕY (p)s) ⊗ (p · v · q−1).

Note that the left copy of MA×MA acts on Cℓ(Y ) by

MA
Ad−−→ O(Y ) → Aut(Cℓ(Y )).

Proof. For compatibility let p, p′ ∈ MA and q ∈ Cℓ(Y ), as well as s ∈ S, v ∈ V . Then

(p, p′) · (q · ((p, p′)−1 · (s⊗ v))) = (p, p′) · (q · (ϕY (p−1)s⊗ (p−1 · v · p′)))
= (p, p′) · (qϕY (p−1)s⊗ (p−1 · v · p′))
= ϕY (p)qϕY (p−1)s⊗ v

= Ad(p)(q)s⊗ v

= Ad(p)(q) · (s⊗ v),

which is how (p, p′) acts on q.
That shows the claim under the condition that αY lifts. To see that αY lifts, we note

that Y = n⊕n is a maximal isotropic decomposition, as n, n are both isotropic and dual
to each other. This shows that S := ∧

n is the spin module, and if αY lifts when acting
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on S, it lifts to Pin(Y ). Write π : Cℓ(Y ) → End(S) for the spin representation. First
note that A is simply connected, so every smooth Lie algebra representation of A lifts
to a Lie group representation, so we only need to check for M . We have

π(αY (Fµν)) = 1
8(π(Pν)π(Kµ) − π(Pµ)π(Kν))

= 1
4
(
ϵPν ιKµ − ϵPµιKν

)
.

Note that

1
4ϵPν ιKµP

ρ1 ∧ · · · ∧ P ρr = 1
4ϵPν

r∑
i=1

(−1)iB(Kµ, P
ρi)P ρ1 ∧ · · · P̂ ρi · · · ∧ P ρr

=
r∑

i=1
(−1)iδρi

µ PνP
ρ1 ∧ · · · P̂ ρi · · · ∧ P ρr

= −
r∑

i=1
δρi

µ P
ρ1 ∧ · · · P̂ ρiPν · · · ∧ P ρr ,

so 1
4ϵPν ιKµ replaces every occurrence of Pµ with −Pν . This shows that π(αY (Fµν)) re-

places every occurrence of Pµ with −Pν , and every occurrence of P ν with Pµ. Therefore,

π(αY (Fµν)) = ad(Fµν)

(extended to S). We therefore know for sure that the representation of m on S lifts to
a group representation of M , namely the extension of Ad. Since Cℓ(Y ) ∼= End(S), this
shows that αY is the derivative of a Lie group homomorphism ϕY : MA → Pin(Y ).

Lemma 4.3.8. Let V be an MA-bimodule and S a Cℓ(Y )-module. Equip S ⊗ V with
its (Cℓ(Y ),MA×MA)-module structure from Lemma 4.3.7. Then C∞(U ;S ⊗ V ) is an
(A,MA×MA)-module.

Proof. The compatibility of the actions of U(L) and MA × MA was already the topic
of Lemma 4.2.1, so it remains to show that the actions of U(L) and Cℓ(Y ) commute,
and that the actions of Cℓ(Y ) and MA×MA are compatible.

For the first let ξ ∈ g, q ∈ Cℓ(Y ), f ∈ C∞(U ;S ⊗ V ), then

(ξ · (q · f))(x) = d
dt (q · f)(exp(−tξ)x)

∣∣∣∣
t=0

= d
dt q · f(exp(−tξ)x)

∣∣∣∣
t=0

= q · d
dt f(exp(−tξ)x)

∣∣∣∣
t=0

= q · (ξ · f)(x) = (q · (ξ · f))(x).
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For the latter, let q ∈ Cℓ(Y ), p, p′ ∈ MA, f ∈ C∞(U ;S⊗V ). According to Lemma 4.3.7
we now have

((p, p′) · (q · ((p, p′)−1 · f)))(x) = (p, p′) · (q · ((p, p′)−1 · f))(p−1xp′)
= (p, p′) · (q · ((p, p′)−1 · f)(p−1xp′))
= (p, p′) · (q · ((p, p′)−1 · f(x)))
= Ad(p)(q) · f(x)
= (Ad(p)(q) · f)(x).

Corollary 4.3.9. Let V be an MA-bimodule and S a Cℓ(Y )-module, then Ward(S⊗V )
is a AMA-module.

Proof. Follows from Lemma 4.3.8 and Lemma 2.1.3.

Corollary 4.3.10. In the same context, the Dirac operator D acts on Ward(S ⊗ V ).

Proof. By Lemma 4.3.4, D is independent of the basis of Y , i.e. it is invariant under
O(Y ). In particular, under Ad(MA), hence D ∈ AMA.

4.4. Which Dirac Operator?
Now, our treatment of the Dirac operator in the last section still leaves something to
be desired. In a very algebraic setting we described an object whose square has as its
leading term (filtering A by the filtration inherited purely from U(g)) the quadratic
Casimir element. However, when talking about the Dirac operator (e.g. in [Roe98]),
one usually expects spin structures, Clifford bundles and the like. So does there exist
something similar for our case?

Proposition 4.4.1. Consider the manifold G/MA. Its tangent bundle is isomorphic
to Ass(Y ), the vector bundle associated to the principal MA-bundle G → MA and the
MA-representation Y (adjoint). (Note that in this section all associated vector bundles,
unless stated otherwise, will be assumed to refer to the group MA and the principal
bundle G → MA\G.)

Proof. Write π : G → MA\G for the quotient map and define

ϕ : Ass(Y ) ∋ MA(g,X) 7→ Tgπ(TeRg((X)) ∈ T (MA\G).

This map is well-defined as for p ∈ MA we have (g,X)p = (p−1g,Ad(p−1)(X)) so that

Tp−1gπ(TeRp−1g(Ad(p−1)(X))) = Tp−1gπ(TeRp−1g(Tp−1Rp(TeLp−1(X))))
= Tp−1gπ(Tp−1Rg(TeLp−1(X)))
= Tp−1gπ(TgLp−1(TeRg(X)))
= Tg(π ◦ Lp−1)(TeRg(X))
= Tgπ(TeRg(X)).
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Furthermore, since Tgπ and TeRg are linear maps, ϕ is a linear map on fibres, so it gives
rise to a vector bundle morphism ϕ : Ass(Y ) → T (MA\G). Note that MA’s action on
G is free, so we have dim(MA\G) = dim(G) − dim(MA) = dim(g) − dim(r) = dim(Y ).
Thus it suffices to show fibrewise injectivity to show that ϕ is an isomorphism.

For that let MAg ∈ MA\G and let X ∈ Y so that ϕ(MA(g,X)) = 0. This means
that the vector field MAh 7→ ϕ((h,X)MA) is zero at MAh = MAg, so that its flow has
to be constant when starting at MAg. As it turns out, this flow is t 7→ MA exp(tX)g,
which is constant iff exp(tX) ∈ MA for all t. This in turn implies that X ∈ r∩Y , which
is trivial.

Note that since B is r-invariant, it defines a metric (nondegenerate symmetric bilinear
– not Hermitean) on the vector bundle T (MA\G).

Corollary 4.4.2. The bundle Cℓ(T (MA\G)) (whose fibre at MAg is Cℓ(TMAg(MA\G)))
is isomorphic to Ass(Cℓ(Y )) (with the representation again being the adjoint represen-
tation).

Now take the representation ϕY : MA → Pin(Y ) from last section and make any
Clifford module S into an MA-module using ϕY . Then consider the vector bundle
Ass(S).

Proposition 4.4.3. Let V be an MA-bimodule, then the vector bundle Ass(S ⊗ V )
(consider only the left action on V ) is a bundle of Clifford modules.

Proof. The Clifford algebra Cℓ(Y ) acts on S ⊗ V by acting trivially on V , which lifts to
a bundle morphism Cℓ(T (MA\G)) ⊗ Ass(S ⊗ V ) → Ass(S ⊗ V ) because

Cℓ(T (MA\G)) ⊗ Ass(S ⊗ V ) ∼= Ass(Cℓ(Y )) ⊗ Ass(S ⊗ V ) ∼= Ass(Cℓ(Y ) ⊗ S ⊗ V ),

and for q ∈ Cℓ(Y ), s ∈ S, v ∈ V, p ∈ MA we have

Ad(p)(q)ϕY (p)(s⊗ v) = ϕY (p)qϕY (p)−1ϕY (p)(s⊗ v) = ϕY (p)(q(s⊗ v)).

We now define a connection on the principal bundle G → MA\G, which we then use
to define a connection on all these associated bundles. Define ω ∈ Ω1(G; r)

ωg(TeRg(ξ + η)) := ξ

for ξ ∈ r, η ∈ Y .

Proposition 4.4.4. ω is a connection on the principal bundle G → MA\G.

Proof. We need to check two properties: equivariance and that the infinitesimal action
is mapped to itself.
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For equivariance note that our “right” action of MA on G is left multiplication with
the inverse, so instead of Rp, we are going to use Lp−1 :

(L∗
p−1ω)g(TeRg(ξ + η)) = ωp−1g(TgLp−1(TeRg(ξ + η)))

= ωp−1g(TgLp−1(TpRp−1g(TeRp(ξ + η))))
= ωp−1g(TeRp−1g(TpLp−1(TeRp(ξ + η))))
= ωp−1g(TeRp−1g(Ad(p−1)(ξ + η)))
= Ad(p−1)(ξ + η) = Ad(p−1)(ωg(TeRg(ξ + η))).

Furthermore, we have ωg(TeRg(ξ)) = ξ for ξ ∈ r, where g 7→ TeRg(ξ) is the infinitesi-
mal action of ξ.

Let now V be any MA-module, then ω generates a connection Ass(V ). If we interpret
a section of Ass(V ) as equivariant function on G, we have

∇s = ds+ ω · s

(ds is taken component-wise, ω · s is the action of r on V ). In particular, if we take the
vector field X to be an equivariant function mapping to Y , we have

∇Xs = X(s)

(again, component-wise).

Proposition 4.4.5. The induced connections on T (MA\G) ∼= Ass(Y ) and Ass(S ⊗ V )
are compatible with the inner product induced from B and the Clifford action Ass(Cℓ(Y ))⊗
Ass(S ⊗ V ) → Ass(S ⊗ V ).

Proof. Let X,Y be vector fields on MA\G, interpreted as equivariant functions, then

B(∇X,Y ) +B(X,∇Y ) = B(dX ,Y ) +B(X,dY ) +B(ω ·X,Y ) +B(X,ω · Y )

(dX taken component-wise). Since B is r-invariant, multiplication with ω is skew-
symmetric with respect to B, hence the above equals

B(dX ,Y ) +B(Y, dX) = dB(X,Y ).

Furthermore, by assumption ω(X) = ω(Y ) = 0, hence we have

∇XY − ∇Y X = X(Y ) − Y (X) = [X,Y ],

so ∇ (on the tangent bundle) is the Levi-Civita connection.
Let now X ∈ Γ(Cℓ(T (MA\G))) ∼= Γ(Ass(Cℓ(Y ))) and s ∈ Γ(S ⊗ V ), interpreted as

equivariant functions, then

∇(X · s) = d(X · s) + ω · (X · s)
= X · ds+ dX · s+ (ω ·X) · s+X · (ω · s)
= X · (ds+ ω · s) + (dX + ω ·X) · s
= X · ∇s+ ∇X · s.
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As a consequence, Ass(S ⊗ V ) is a Clifford bundle with compatible connection. By
[Roe98, chapter 3] this is precisely the setting where we can define the Dirac operator
(modulo the fact that B is not positive definite, so the analytical statements likely don’t
hold). Let Y1, . . . , Y2n be a (complex) orthonormal basis of Y and let a local orthonormal
frame of T (MA\G) be given by

Xi :=
2n∑

j=1
aijYj (i = 1, . . . , 2n)

(where the aij are functions on an open MA-invariant subset of G). Then by definition,
the Dirac operator is given as

s 7→
2n∑
i=1

Xi · ∇Xi(s) =
2n∑
i=1

Xi ·Xi(s) =
2n∑

i,j,k=1
aijaikYj · Yk(s) =

2n∑
i=1

Yi · Yi(s),

where Yi(s) refers to the coordinate-wise application of the right-invariant vector field
whose value at the identity is Yi, and Yi · . . . refers to Clifford multiplication. Thus, we
see that the Dirac operator on E corresponds to the action of

2n∑
i=1

Yi ⊗ Yi ∈ Cℓ(Y ) ⊗ U(L)

on functions G → S ⊗ V that are equivariant on the left.
Next, we can define an action of MA on sections of Ass(S ⊗ V ). Let p ∈ MA and

s ∈ Γ(Ass(S ⊗ V )), then define

(s · p)(MAg) := MA(v · p, g) where s(MAgp−1) = MA(v, gp−1),

in other words, if we interpret s, s · p as functions on G then (s · p)(g) = s(gp−1) · p.
In other words, the sections of Ass(S ⊗ V ) that are invariant under the MA-action
are precisely the MA-biequivariant functions G → S ⊗ V . In particular, the sections
Γ(Ass(S ⊗ V ), U/MA) that are MA-equivariant are exactly the solutions Ward(S ⊗ V )
to the conformal Ward identities, and the Dirac operator acting on invariant sections is
precisely the same operator as the action described in Section 4.3.
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5. Special Case: Scalar Conformal
Blocks

As we already saw in Example 1.2.2, solutions to the conformal Ward identities become
especially tractable if all (or as many as possible) M -actions involved are trivial. In this
section we will now work out the differential operators that the quadratic Casimir element
and the Dirac operator reduce to when applied to scalar solutions to the conformal Ward
identities. More precisely: let ∆1,∆2 ∈ C and let V = C be the MA-bimodule with

m exp(αD0) · v ·m′ exp(βD0) = exp(α∆1 + β∆2)v.

Then we shall work with Ward(V ) for the Casimir element, and with Ward(S ⊗ V ) for
the Dirac operator (S a spin module).

5.1. Casimir Action
For the quadratic Casimir element, first note that a value of an equivariant function
f ∈ Ward(V ) is determined by just a few matrix entries:

Proposition 5.1.1. Let f ∈ Ward(V ), then

f

A ∗ C
∗ ∗ ∗
G ∗ I

 =
∣∣∣∣A− C +G− I

2

∣∣∣∣
∆1−∆2

2
∣∣∣∣A− C −G+ I

2

∣∣∣∣−
∆1+∆2

2
fστ (u, v),

where
u = 4

(A− I)2 − (C −G)2 v = (C +G)2 − (A+ I)2

(A− I)2 − (C −G)2 )

and

σ, τ =


t, t (A− C)2 > (G− I)2&2u+ 2v + 2uv > u2 + v2 + 1
t, s (A− C)2 > (G− I)2&2u+ 2v + 2uv < u2 + v2 + 1
s, s (A− C)2 < (G− I)2&2u+ 2v + 2uv > u2 + v2 + 1
s, t (A− C)2 < (G− I)2&2u+ 2v + 2uv < u2 + v2 + 1

.

Proof. By Section B.5, we see that the cross-ratios of the matrix in the claim are given
by

u = 4
(A− I)2 − (C −G)2 , v = (C +G)2 − (A+ I)2

(A− I)2 − (C −G)2
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and that the matrix can be brought into Yστ by multiplication with m exp(αD0) on the
left and exp(βD0)m′ on the right, with

exp(α− β) =
∣∣∣∣A− C +G− I

2

∣∣∣∣, exp(−α− β) =
∣∣∣∣A− C −G+ I

2

∣∣∣∣,
which yields the expression in the claim. The only thing that remains is the correct choice
for σ, τ . Recall from Proposition 3.3.9 that they reflect the signs of ∥x∥2,

∥∥∥y − η(x,y)
η(x,x)x

∥∥∥2
,

respectively. We have
(A− C)2 − (G− I)2

4 = −x2 exp(−2β),

which is positive iff x2 < 0 and negative iff x2 > 0. Similarly, we have

η(ỹ, ỹ) = η(y, y) − η(x, y)2

η(x, x)

= η(x, x)
4

(
4 η(y, y)
η(x, x) − (η(x− y, x− y) − η(x, x) − η(y, y))2

η(x, x)2

)

= η(x, x)
4

(
4v − (u− v − 1)2

)
= η(x, x)

4 (2u+ 2v + 2uv − u2 − v2 − 1),

so the sign of η(ỹ, ỹ) depends on the sign of η(x, x) and on the sign of 2u+ 2v + 2uv −
u2 − v2 − 1 in the way claimed.

Proposition 5.1.2. Let f ∈ Ward(V ), then

D0 · f = −∆1f, Fµν · f = 0.

Proof. We have

(D0 · f)(x) = d
dt f(exp(−tD0)x)

∣∣∣∣
t=0

= d
dt t

−∆1f(x)
∣∣∣∣
t=0

= −∆1f(x)

(Fµν · f)(x) = d
dt f(exp(−tFµν)x)

∣∣∣∣
t=0

= d
dt f(x)

∣∣∣∣
t=0

= 0.

Using the results from Appendix B.6, we thus see that

Ωg · f = ∆1(∆1 + d)
2 f + 1

2K
µPµ · f.

To calculate the Casimir element, it therefore suffices to calculate the action of KµPµ.
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Proposition 5.1.3. Up to order s2, t2, for µ = 1, . . . , d (hence no summing)

exp(−tPµ) exp(−sKµ)ξστ (a, b) =

A ∗ C
∗ ∗ ∗
G ∗ I


with(
A C
G I

)
= w0

(
1 + st eT

µ (tη − s) −st
−st −eT

µ (tη + s) 1 + st

) 1∓1
2 + 1∓v

2u −1∓1
2 + 1∓v

2u
u∓v

u x• + w0wy
• −u±v

u x• + w0wy
•

1±1
2 − 1±v

2u −1±1
2 − 1±v

2u

,
where x, y are such that ξστ (a, b) = exp(x · P )w exp(y · P ).

Proof. We have

exp(−tPµ) exp(−sKµ)

 1 + st eT
µ (tη − s) −st

(sη − t)eµ 1 + 2steµe
T
µ −(sη + t)eµ

−st −eT
µ (tη + s) 1 + st

.
Similarly, we have

ξστ (a, b) = exp(x · P )w exp(y · P ) =

w0
1∓1−y2

2 ± w0
2 (y ∓ w0wx)2 ∗ w0

−(1∓1)−y2

2 ± w0
2 (y ∓ w0wx)2

w0(1 − y2)x• + wy• ∗ −w0(1 + y2)x• + wy•

w0
1±1−y2

2 ∓ w0
2 (y ∓ w0wx)2 ∗ w0

−(1±1)−y2

2 ∓ w0
2 (y ∓ w0wx)2


(where x2 = ±1). From (3.3) we know that

(y ∓ w0wx)2 = ±1
u
, y2 = ±v

u
,

so that this becomesw0
1∓1

2 ∓ w0v
2u + w0

2u ∗ −w0
1∓1

2 ∓ w0v
2u + w0

2u
w0

u∓v
u x• + wy• ∗ −w0

u±v
u x• + wy•

w0
1±1

2 ∓ w0v
2u − w0

2u ∗ −w0
1±1

2 ∓ w0v
2u − w0

2u

.
Consequently, the matrix exp(−tPµ) exp(−sKµ)ξστ (a, b) has in its corners the entries

(
A C
G I

)
= w0

(
1 + st eT

µ (tη − s) −st
−st −eT

µ (tη + s) 1 + st

) 1∓1
2 + 1∓v

2u −1∓1
2 + 1∓v

2u
u∓v

u x• + w0wy
• −u±v

u x• + w0wy
•

1±1
2 − 1±v

2u −1±1
2 − 1±v

2u

.
We now distinguish cases. We have either x·P = P1 or Pµ, hence x• = e1 or ed. Similarly,
y ·P is a linear combination of P1, P2, Pd−1, Pd in terms of a, b, so then y = ae1 + be2, or
any of the other combinations (without minus signs).
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In the case στ = ss, this reads

w0

(
1 + st −(s+ t) −st
−st t− s 1 + st

) 1−v
2u

1−v
2u

u−v
u e1 + w0(w1ae1 + w2be2) −u+v

u e1 + w0(w1ae1 + w2be2)
2u−1−v

2u
−2u−1−v

2u


=w0

(
1 + st −(s+ t) −st
−st t− s 1 + st

) 1
2 − w0w1a

1
2 − w0w1a

Aδµ,1 + w0w2bδµ,2 (A− 2)δµ,1 + w0w2bδµ,2
1
2 + w0w1a− a2 − b2 −3

2 + w0w1a− a2 − b2


where A = w0w1a+ 1 − a2 − b2.

For στ = st, it reads

w0

(
1 + st eT

µ (tη − s) −st
−st −eT

µ (tη + s) 1 + st

) 1−v
2u

1−v
2u

u−v
u e1 + w0(w1ae1 + wdbed) −u+v

u e1 + w0(w1ae1 + wdbed)
2u−1−v

2u
−2u−1−v

2u


=w0

(
1 + st eT

µ (tη − s) −st
−st −eT

µ (tη + s) 1 + st

) 1
2 − w0w1a

1
2 − w0w1a

Ae1 + w0wdbed (A− 2)e1 + w0wdbed
1
2 + w0w1a− a2 + b2 −3

2 + w0w1a− a2 + b2


where A = w0w1a+ 1 − a2 + b2.

For στ = ts, it reads

w0

(
1 + st eT

µ (tη − s) −st
−st −eT

µ (tη + s) 1 + st

) 2u+1+v
2u

−2u+1+v
2u

−u+v
u ed + w0(wdaed + w1be1) u−v

u ed + w0(wdaed + w1be1)
−1−v

2u −1−v
2u


=w0

(
1 + st eT

µ (tη − s) −st
−st −eT

µ (tη + s) 1 + st

)3
2 + w0wda+ a2 − b2 −1

2 + w0wda+ a2 − b2

Aed + w0w1be1 (A− 2)ed + w0w1be1
−1

2 − w0wda −1
2 − w0wda


where A = w0wda+ 1 + a2 − b2.

And for στ = tt we get

w0

(
1 + st −(s+ t) −st
−st t− s 1 + st

) 2u+1+v
2u

−2u+1+v
2u

Aδµ,d + w0wd−1bδµ,d−1 (A− 2)δµ,d + w0wd−1bδµ,d−1
−1−v

u −1−v
2u


=w0

(
1 + st −(s+ t) −st
−st t− s 1 + st

) 3
2 + w0wda+ a2 + b2 −1

2 + w0wda+ a2 + b2

Aδµ,d + w0wd−1bδµ,d−1 (A− 2)δµ,d + w0wd−1bδµ,d−1
−1

2 − w0wda −1
2 − w0wda


for A = w0wda+ 1 + a2 + b2.

Corollary 5.1.4. For f ∈ Ward(V ) we have

(Ωg · f)στ (u, v) =
(

(1 − u− v)∂v

(
v∂v − ∆1 + ∆2

2

)
+ 2u∂u

(
u∂u + ∆2 − d

2

)

(v − u− 1)(u∂u + v∂v)
(
u∂u + v∂v − ∆1 − ∆2

2

)
+ ∆2

2 − d∆2
2

)
fστ (u, v)
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Proof. Plugging the expressions from Proposition 5.1.3 into the expression from Propo-
sition 5.1.1 and differentiating with respect to s, t at s = t = 0 gives

(KµPµ · f)στ (u, v).

Curiously, for all choices of σ, τ we get the same expressions but potentially for different
choices of µ. To unify them, write ξστ (a, b) = exp(x · P )w exp(y · P ). Then exactly one
component of x is one, say xµ = 1, and exactly one other component of y is nonzero,
say yν = b.

For ρ ̸∈ {µ, ν} we get

(KµPµ · f)στ (u, v) = Afστ (u, v) − (∆1 + ∆2)fστ (u, v) − 2u∂ufστ (u, v)
(KνPν · f)στ (u, v) = Bfστ (u, v) − (∆1 + ∆2)fστ (u, v) − 2u∂ufστ (u, v)
(KρPρ · f)στ (u, v) = −(∆1 + ∆2)fστ (u, v) − 2u∂ufστ (u, v)

(no summation over repeated indices), for differential operators

A = 2(v − 1 − u)
(

(u∂u)2 + 2u∂uv∂v − ∆1 − ∆2
2 (u∂u + v∂v)

)
+ 4u∂u(u∂u + ∆2)

+ (v − 1 − u)(v + u− 1)∂vv∂v − (1 + u2 + v2 − 2u− 2v − 2uv)u∂u∂v

− (∆1 + ∆2)(1 − u− v)∂v + ∆2
2 − ∆2

1

B = (1 + u2 + v2 − 2u− 2v − 2uv)(∂vv∂v + u∂u∂v).

Summing them all together yields the claimed expression.

We will see later how exactly to make sense of this differential operator.

5.2. Dirac Action
In order to get an action by the Dirac operator, we now have to break the initial premise
of this section and make our functions vector-valued. Instead of Ward(V ) we’re now
considering Ward(S ⊗ V ). Since we’re now working with vector-valued functions, we
can’t use the trick from last section where the value of the function only depends on four
matrix entries. However, since we’re only working with first-order differential operators,
it is feasible to work with the NNMA decomposition and its cocycles. This has the
side-effect of making our calculations valid for other MA-bimodules as well.

From Appendix B.6 we know that K1, . . . ,Kd, P 1, . . . , P d and
1
4P1, . . . ,

1
4Pd,

1
4K1, . . . ,

1
4Kd

are dual bases of Y , hence the cubic Dirac operator is given

D = 1
4K

µ ⊗ Pµ + 1
4P

µ ⊗Kµ.

Both summands happen to be MA-invariant, so that we shall calculate them separately:
4D = D1 + D2.
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5.2.1. D1

We’re now calculating a Cℓ(Y )-valued differential operator, where the differential part
comes from the action of Pρ.

For any vector x ∈ Rp,q write ∥x∥ :=
√

|η(x, x)|. Throughout this section let σ, τ ∈
{s, t}, let x, y ∈ Rp,q be such that

ξστ (a, b) = exp(x · P )w exp(y · P ),

in particular x = eµ, y = aeµ + beν for appropriate indices µ, ν. In this section we
will assume no summation over repeated occurrences of µ, ν. Moreover, all equations
involving t are understood to hold up to O(t2).

Proposition 5.2.1. Let ρ = 1, . . . , d, write α(t) := log(∥x− teµ∥) and let m(t) ∈ M be
such that

m(t)x = x− teρ

∥x− teρ∥
(equivalently exp(α(t))m(t)x = x− teρ) and

exp(α(t))cw(m(t))−1y = y′(t) = a′(t)eµ + b′(t)eν .

all up to order O(t2). Then

exp(−tPρ)ξστ (a, b) = exp(−α(t)D0)m(t)ξστ (a′(t), b′(t))cw(m(t))−1 exp(−α(t)D0).

In particular, if u′(t), v′(t) are the cross-ratios associated to ξστ (a′(t), b′(t)), we get

(exp(tPµ) · f)στ (u, v) = exp(−α(t)D0)m(t) · fστ (u′(t), v′(t)) · cw(m(t))−1 exp(−α(t)D0)

for f ∈ Ward(S ⊗ V ) (for any MA-bimodule V ).

Proof. We identify a vector v with the column vector v•, so that v = vαeα. We thus
obtain

exp(−tPρ)ξστ (a, b) = exp(−tPρ) exp(x · P )w exp(y · P )
= exp((x− teρ) · P )w exp(y · P ).

Now, we have (x− teρ) · P = Ad(exp(−α(t)D0)m(t))(x · P ) by assumption, hence

exp(−tPρ)ξστ (a, b) = exp(−α(t)D0)m(t) exp(x · P ) exp(α(t)D0)m(t)−1w exp(y · P )
= exp(−α(t)D0)m(t) exp(x · P )w exp(−α(t)D0)cw(m(t))−1 exp(y · P )

= exp(−α(t)D0)m(t) exp(x · P )w exp
(
(α(t)cw(m(t))−1y) · P

)
·

exp(−α(t)D0)cw(m(t))−1

= exp(−α(t)D0)m(t) exp(x · P )w exp
(
y′(t) · P

)
exp(−α(t)D0)cw(m(t))−1

= exp(−α(t)D0)m(t)ξστ (a′(t), b′(t)) exp(−α(t)D0)cw(m(t))−1.
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Proposition 5.2.2 (Case ρ = µ). For f ∈ Ward(S⊗V ) (V an arbitrary MA-bimodule)
we have

(1⊗Pµ·f)στ (u, v) = D0·fστ (u, v)+fστ (u, v)·D0+(v+1−u)u∂ufστ (u, v)+(v−1−u)v∂vfστ (u, v).

Proof. We have ∥x− teµ∥ = 1 − t, so that α(t) = −t. Pick m(t) = 1, then we can apply
Proposition 5.2.1 to get

(exp(tPµ) · f)στ (u, v) = exp(tD0) · fστ (u′(t), v′(t)) · exp(tD0)

where a′(t) = (1 − t)a, b′(t) = (1 − t)b), so that

u′(t) =


1

(a−at−w0w1)2±(1−t)2b2 σ = s
1

(a−at+w0wd)2∓(1−t)2b2 σ = t

= 1
u−1 − t(u−1v + u−1 − 1) = u

1 − t(v + 1 − u) ≈ u+ tu(v + 1 − u)

v′(t)
u′(t) = (1 − t)2(a2 ± b2) = (1 − t)2 v

u

v′(t) = (1 − 2t)v
1 − t(v + 1 − u) ≈ v + tv(v − 1 − u).

Hence,

(Pµ·f)στ (u, v) = D0·fστ (u, v)+fστ (u, v)·D0+((v + 1 − u)u∂u + (v − 1 − u)v∂v)fστ (u, v).

Proposition 5.2.3 (Case ρ = ν). For f ∈ Ward(S ⊗ V ) (V arbitrary MA-bimodule)
we have

(1 ⊗ Pν · f)στ = −F µ
ν · fστ (u, v) + wµwνfστ · F µ

ν − 2ηννw0wνb(u∂u + v∂v)fστ (u, v).

Proof. We have α(t) = 0. Next note that F µ
ν eµ = F µ

ν x = eν (no summation over µ),
so that m(t) = 1 − tF µ

ν satisfies m(t)x = x− teν , so we can use it. Furthermore,

exp(α(t))cw(m(t))−1y = (1 + wµwνtF
µ

ν )(aeµ + beν)
= (b+ wµwνat)eν + (a− wµwνηµµηννbt)eµ,

so that a′(t) = a− wµwνηµµηννbt and b′(t) = b+ wµwνat. Then

u′(t) = u(1 − 2ηννw0wµubt), v′(t) = v(1 − 2ηννw0wµubt),

which shows the claim.

Proposition 5.2.4 (Other Cases). Let ρ ̸∈ {µν} and let f ∈ Ward(S ⊗ V ) for an
arbitrary MA-bimodule V , then

(1 ⊗Pρ · f)στ (u, v) = −
(
F µ

ρ − wµwν
a

b
F ν

ρ

)
· fστ (u, v) +wρwµfστ (u, v) ·

(
F µ

ρ − a

b
F ν

ρ

)
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Proof. We have α(t) = 0. Then m(t) = 1 − tF µ
ρ + wµwν

a
bF

ν
ρ maps

m(t)x = 1 − teρ.

Furthermore, we have

cw(m(t))−1 = w

(
1 + tF µ

ρ − wµwν
a

b
F ν

ρ

)
w = 1 + twρwµ

(
F µ

ρ − a

b
F ν

ρ

)
,

which maps aeµ + bν to itself. Thus, we obtain u′(t) = u, v′(t) = v and hence

(1⊗Pρ ·f)σ,τ (u, v) = −
(
F µ

ρ − wµwν
a

b
F ν

ρ

)
·fστ (u, v)+wρwµfστ (u, v) ·

(
F µ

ρ − a

b
F ν

ρ

)
,

as claimed.

In the case where V = C with D0 acts by ∆1,∆2 from the left and right, respectively,
we obtain the following differential operators

(1 ⊗ Pµ · f)στ (u, v) = (∆1 + ∆2 + αY (D0) + (v + 1 − u)u∂u + (v − 1 − u)v∂v)fστ (u, v)
(1 ⊗ Pν · f)στ (u, v) = (−αY (F µ

ν ) − 2ηννw0wνub(u∂u + v∂v))fστ (u, v)

(1 ⊗ Pρ · f)στ (u, v) = −
(
αY (F µ

ρ ) − wµwν
a

b
αY (F ν

ρ )
)
fστ (u, v).

Inserting the well-known expressions for αY (D0) and αY (Fµν), we obtain

(D1 · f)στ (u, v) =Kµ
(

∆1 + ∆2 − d

2 + (v + 1 − u)u∂u + (v − 1 − u)v∂v

)
fστ (u, v)

−2ubKνwνw0(u∂u + v∂v)fστ (u, v)

+wµwν
a

b
Kν
(
αY (D0) + d

2 + KµPµ

8

)
fστ (u, v)

5.2.2. D2

All assumptions from the last section about x, y, µ, ν, the Einstein summation conven-
tion, and equations involving t are also in force in this section.

In this section we’re going to use heavily that

exp(bt ·K) exp
(
xṖ
)

= exp
(
x′ · P

)
exp

(
b′ · P

)
m exp(αD0)

where

α = 2tbµx
µ

x′µ = (1 − 2tbνx
ν)xµ + x2tbµ

b′µ = tbµ

mµ
ν = δµ

ν + 2tbµxν − 2txµbν
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(see Proposition B.4.1). In particular, for x = eµ and b = −eρ we obtain

α = −2tδρ
µ

x′ = eµ + ηµµt(2δρ
µ − 1)eρ

b′ = −teρ

m = 1 − 2tF ρ
µ .

Proposition 5.2.5. Let ρ = 1, . . . , d. Write α(t) := log(∥x+ teρ∥) and m′(t) = 1 −
2tF ρ

µ . Assume, m(t) ∈ M is such that

m(t)x =
x+ ηµµt(2δρ

µ − 1)eρ

∥· · ·∥
,

(equivalently exp(α(t))m(t)x = x+ ηµµt(2δρ
µ − 1)eρ) and such that

exp(−α(t))cw(m−1m′)(y + w0wρte
ρ) = y′(t) = a′(t)eµ + b′(t)eν

lies in the span of eµ, eν . Then

exp(−tKρ)ξστ (a, b) = exp(−α(t)D0)m(t)ξστ (a′, b′)cw(m−1m′) exp(α(t)D0),

hence for any f ∈ Ward(S ⊗ V ) (arbitary V ) we have

(exp(tKρ) · f)στ (u, v) = exp(−α(t)D0)m(t) · fρσ(u′, v′) · cw(m−1m′) exp(α(t)D0).

Proof. We have

exp(−tKρ) exp(Pµ) = exp
(
Pµ + ηµµt(2δρ

µ − 1)P ρ
)

exp(−tKρ)m′(t) exp(−2α(t)D0).

Note that the vector
eµ + ηµµt(2δρ

µ − 1)eρ

has “norm” 1 + t if ρ = µ and 1 otherwise, so we have

exp(α(t))m(t)x = x+ ηµµt(2δρ
µ − 1)eρ

or in other words,

exp(−tKρ) exp(Pµ) = exp(−α(t)D0)m exp(Pµ)m(t)−1m′(t) exp(−α(t)D0) exp(−tKρ)

(where we use that −tKρ is already purely of order t, so it commutes with m′(t) and
exp(−α(t)D0)). Thus,

exp(−tKρ)ξστ (a, b) = exp(−α(t)D0)m exp(Pµ)wcw(m−1m′) exp(α(t)D0) exp((y + w0wρte
ρ) · P )

= exp(−α(t)D0)m exp(Pµ)w exp
(
y′(t) · P

)
cw(m−1m′) exp(α(t)D0)

= exp(−α(t)D0)mξστ (a′(t), b′(t))cw(m−1m′) exp(α(t)D0).
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Proposition 5.2.6 (Case ρ = µ). For f ∈ Ward(S ⊗ V ) (V arbitrary MA-bimodule)
we have

(1 ⊗Kµ · f)στ (u, v) = −D0 · fστ (u, v) + fστ (u, v) ·D0 + 2u∂ufστ (u, v)
− (1 − u− v)∂vfστ (u, v).

Proof. We have α(t) = t and we can pick m′ = m = 1. Then we obtain

exp(−tKµ)ξστ (a, b) = exp(−tD0)ξστ ((1 − t)(a+ w0wµηµµt), (1 − t)b). exp(tD0),

The parameters a′ = (1− t)a+w0wµηµµt and b′ = (1− t)b correspond to the cross-ratios

u = (1 + 2t)u, v = v + t(v − 1 − u),

so that we obtain

(1⊗Kµ ·f)στ (u, v) = −D0 ·fστ (u, v)+fστ (u, v) ·D0 +(2u∂u +(v−1−u)∂v)fστ (u, v).

Proposition 5.2.7 (Case ρ = ν). For f ∈ Ward(S ⊗ V ) (V arbitrary MA-bimodule)
we have

(1 ⊗Kν · f)στ (u, v) = F ν
µ · fστ (u, v) + wµwνfστ (u, v) · F ν

µ + 2bηµµw0wνu∂vfστ (u, v).

Proof. We have α(t) = 0 and m′(t) = 1 − 2tF ν
µ . Pick m(t) = 1 − tF ν

µ . This maps
eµ = x to eµ − tηµµe

ν , which is what we want. Furthermore, we have

cw(m−1m′) = cw(1 − tF ν
µ ) = 1 − wµwνtF

ν
µ ,

which maps y + w0wνte
ν to

(a+ wµwνbt)eµ + (b+ wνηννt(w0 − wµηµµa))eν ,

so that
a′ = a+ wµwνbt, b′ = b+ wνηννt(w0 − wµηµµa).

This shows that the new cross-ratios are u′(t) = u and v′(t) = v + 2ubηµµw0wνt. Thus,

(1 ⊗Kν · f)στ (u, v) = F ν
µ · fστ (u, v) + wµwνfστ (u, v) · F ν

µ

+ 2ubηµµw0wν∂vfστ (u, v).

Proposition 5.2.8 (Other Cases). For f ∈ Ward(S ⊗ V ) (V arbitrary MA-bimodule)
and ρ ̸∈ {µ, ν} we have

(1 ⊗Kρ · f)στ (u, v) = −
(
F ρ

µ + wµwνcF
ρν
)

· fστ (u, v)

− wρwµfστ (u, v) ·
(
F ρ

µ − cF ρν
)
.

where c = ηµµa−w0wµ

b
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Proof. We have α(t) = 0 and m′(t) = 1 − 2tF ρ
µ . Pick

m(t) = 1 − tF ρ
µ − wµwν

ηµµa− w0wµ

b
tF ρν .

Then m(t)x = x− ηµµte
ρ and

cw(m(t)−1m′) = w

(
1 − tF ρ

µ + wµwν
ηµµa− w0wµ

b
tF ρν

)
w

= 1 − wρwµt

(
F ρ

µ − ηµµa− w0wµ

b
tF ρν

)
which maps aeµ + beν +w0wρte

ρ to aeµ + beν , hence the cross-ratios are unaltered. Thus
we obtain

(1 ⊗Kρ · f)στ (u, v) = −
(
F ρ

µ + wµwνcF
ρν
)

· fστ (u, v)

− wρwµfστ (u, v) ·
(
F ρ

µ − cF ρν
)

where
c = ηµµa− w0wµ

b
.

In the case of V = C where D0 acts by ∆1,∆2 from the left and right, respectively,
we obtain the following differential operators:

(1 ⊗Kµ · f)στ (u, v) = (∆2 − ∆1 − αY (D0) + 2u∂u − (1 − u− v)∂v)fστ (u, v)
(1 ⊗Kν · f)στ (u, v) = (αY (F ν

µ ) + 2ηµµw0wνbu∂v)fστ (u, v)

(1 ⊗Kρ · f)στ (u, v) = −
(
αY (F ρ

µ ) + wµwν
ηµµa− w0wµ

b
αY (F ρν)

)
fστ (u, v).

As a consequence, D2 corresponds to the following Cℓ(Y )-valued differential operator:

Pµ

(
∆2 − ∆1 − d

2 + 2u∂u − (1 − u− v)∂v

)
+2ηµµw0wνPνbu∂v

+wµwν
ηµµa− w0wµ

b
P ν
(
αY (D0) − d

2 − PµK
µ

8

)
,

where we don’t sum over repeated indices.

5.2.3. As Matrices

Let f ∈ Ward(S ⊗ V ) (for V = C); let’s have another look at what values the functions
fστ (σ, τ ∈ {s, t}) assume. From Proposition 4.1.9 and its conclusion, we know that fστ

can vary freely within (S ⊗ V )Hστ where

Hστ := Stab(Yστ ) = {(g, cw(g)) ∈ MA×MA | g ∈ MA, geµ = eµ, geν = eν} .
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Proposition 5.2.9. The vector space (S ⊗ V )Hστ has dimension eight and is spanned
by

uI :=
√

2−3#I
Pi1 ∧ · · · ∧ Pir I = {i1 < · · · < ir}

for I ⊆ {µ, ν} or {1, . . . , n} \ {µ, ν} ⊆ I ⊆ {1, . . . , n}.

Proof. Since M acts trivially on V from both sides, the only M -action whose invari-
ants we’re looking for, is the one via ϕY on S. As already established in the proof of
Lemma 4.3.7, this M -action on S is identical with the adjoint action on Y , extended to
the exterior algebra. Consequently, (S⊗V )Hστ is closed under taking exterior products.
Since Hστ fixes eµ, eν , we have uµ, uν ∈ (S ⊗ V )Hστ .

Furthermore, due to orthogonality, Hστ leaves the space spanned by (eρ)ρ ̸=µ,ν (the
orthogonal complement of eµ, eν) invariant and acts as linear maps of determinant 1.
Consequently, for (g, cw(g)) ∈ Hστ we have

ϕY (g)u{1,...,n}\{µ,ν} = det ′(g)u{1,...,n}\{µ,ν} = u{1,...,n}\{µ,ν},

where det′(g) is the determinant of g restricted to the span of (eρ)ρ̸=µ,ν , which is 1. So
u{1,...,n}\{µ,ν} is also contained in (S ⊗ V )Hστ . This shows that

span {uI | I ⊆ {µ, ν} or {1, . . . , n} \ {µ, ν} ⊆ I} ⊆ (S ⊗ V )Hστ .

For the opposite inclusion, note that (S ⊗ V )Hστ ⊆ (S ⊗ V )hστ . Let x ∈ (S ⊗ V )hστ ,
say

x =
∑

I⊆{1,...,n}
aIuI .

For 1 ≤ α, β ≤ n we then have

αY (Fαβ)x =
∑

I⊆{1,...,n}
aIαY (Fαβ)uI

and

αY (Fαβ)uI =


0 α, β ∈ I

(−1)···uI\{α}∪{β} α ∈ I, β ̸∈ I

(−1)···uI\{β}∪{α} α ̸∈ I, β ∈ I

0 α, β ̸∈ I

.

In other words,

αY (Fαβ)x =
∑

I⊆{1,...,n}\{µ,ν}

(
(−1)···aI∪{α}uI∪{β} + (−1)···aI∪{β}uI∪{α}

)
.

Now assume that I is neither a subset of {µ, ν} nor a superset of {1, . . . , n}, then there
are α, β with {α, β} ∩ {µ, ν} = ∅ such that α ∈ I and β ̸∈ I. Then Fαβ ∈ hστ , hence

0 = αY (Fαβ)x

=
∑

J⊆{1,...,n}\{µ,ν}

(
(−1)···aJ∪{α}uJ∪{β} + (−1)···aJ∪{β}uJ∪{α}

)
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For all possible choices of J , the vectors uJ∪{α} and uJ∪{β} are linearly independent,
hence all aJ∪{α}, aJ∪{β} are zero. In particular, aI = aI\{α}∪{α} = 0. This shows that x
indeed lies in the span of uI for I ⊆ {µ, ν} or {1, . . . , n} \ {µ, ν} ⊆ I.

Note that for this basis we have

Pρ · uI =
{

(−1)#{i∈I,i<ρ}2
√

2uI∪{ρ} ρ ̸∈ I

0 otherwise

Kρ · uI =
{

(−1)1+#{i∈I,i<ρ}2
√

2uI\{ρ} ρ ∈ I

0 otherwise
.

For simplicity, introduce the basis vI , ṽI for I ⊆ {µ, ν} that differs from uI , u{1,...,n}\I

only up to signs corresponding to a different ordering of the indices: in our new ordering
µ ≺ ν are smaller than all other possible indices. Then

Pµ : v∅ 7→ 2
√

2vµ vν 7→ 2
√

2vµν

ṽµν 7→ 2
√

2ṽν ṽµ 7→ 2
√

2ṽ∅

Pν : v∅ 7→ 2
√

2vν vµ 7→ −2
√

2vµν

ṽµν 7→ 2
√

2ṽµ ṽν 7→ −2
√

2ṽ∅

Kµ : vµ 7→ −2
√

2v∅ vµν 7→ −2
√

2vν

ṽν 7→ −2
√

2ṽµν ṽ∅ 7→ −2
√

2ṽµ

Kν : vν 7→ −2
√

2v∅ vµν 7→ 2
√

2vµ

ṽµ 7→ −2
√

2ṽµν ṽ∅ 7→ 2
√

2ṽν

and all other elements are mapped to zero. Next, we shall investigate whatKν
(
αY (D0) + d

2 + KµPµ

8

)
and P ν

(
αY (D0) − d

2 − PµKµ

8

)
do to our basis elements:

v αY (D0)v 1
8K

νKµPµv
1
8P

νPµK
µv

v∅
d
2v 0 0

vµ
d−2

2 v 0 −P νv

vν
d−2

2 v −Kνv 0
vµν

d−4
2 v 0 0

ṽ∅ −d
2v 0 0

ṽµ −d−2
2 v −Kνv 0

ṽν −d−2
2 v 0 −P νv

ṽµν −d−4
2 v 0 0.

If by ϵ we designate the endomorphism of (S ⊗ V )Hστ mapping

vI 7→ vI , ṽI 7→ −ṽI ,
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then we obtain the following actions:

Kν
(
αY (D0) + d

2 + KµPµ

8

)
≈ d− 2

2 (1 + ϵ)Kν

P ν
(
αY (D0) − d

2 − PµK
µ

8

)
≈ −d− 2

2 (1 − ϵ)P ν .

As a consequence, for f ∈ Ward(S ⊗ V ) we have

4(D · f)στ (u, v) =Kµ
(

∆1 + ∆2 − d

2 + (v + 1 − u)u∂u + (v − 1 − u)v∂v

)
fστ (u, v)

−wνKν

(
2ubw0(u∂u + v∂v) − wµηνν

a

b

d− 2
2 (1 + ϵ)

)
fστ (u, v)

+Pµ

(
∆2 − ∆1 − d

2 + 2u∂u − (1 − u− v)∂v

)
fστ (u, v)

+wνηµµPν(2w0bu∂v − wνηνν
a− w0wµηµµ

b

d− 2
2 (1 − ϵ))fστ (u, v).

If we now define the differential operators

E := −(v + 1 − u)u∂u − (v − 1 − u)v∂v − ∆1 − ∆2 + d

2
F± :=

√
−ηµµηνν

(
−2ub(u∂u + v∂v) + w0wµηνν

d− 2
2 (1 ± 1)a

b

)
G := −2u∂u + (1 − u− v)∂v + ∆1 − ∆2 + d

2
H± :=

√
−ηµµηνν

(
−2ub∂v + w0wνηνν

a− w0wµηµµ

b

d− 2
2 (1 ± 1)

)
,

we obtain

(D · f)στ (u, v) = −1
4

(
KµE + w0wν√−ηµµηνν

KνF ϵ + PµG+ w0wνηµµ√−ηµµηνν
PνH

−ϵ

)
.

In the basis v∅, vµ, vν , vµν , ṽ∅, ṽµ, ṽν , ṽµν we obtain the following matrix representation:

1√
2



0 E fF ϵ 0 0 0 0 0
−G 0 0 −fF ϵ 0 0 0 0

−hH−ϵ 0 0 E 0 0 0 0
0 hH−ϵ −G 0 0 0 0 0
0 0 0 0 0 −G hH−ϵ 0
0 0 0 0 E 0 0 −hH−ϵ

0 0 0 0 −fF ϵ 0 0 −G
0 0 0 0 0 fF ϵ E 0


for

f := w0wν√−ηµµηνν
, h := w0wνηµµ√−ηµµηνν
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(both are 4th roots of unity). Note that if we rearrange our basis to

v∅, vµν , vµ, vν , ṽµν , ṽ∅, ṽν , ṽµ,

we obtain the following matrix:

1√
2

(
D+ 0
0 D−

)
, D± =


0 0 E fF±

0 0 hH∓ −G
−G −fF± 0 0

−hH∓ E 0 0

. (5.1)

So we see that D leaves invariant the eigenspaces of ϵ. For high enough d (d > 5), this is
also evident from the fact that any term within D only changes the degree of an element
in S by 1 and leaves (S ⊗ V )Hστ invariant, so in particular the subspaces consisting of
degrees 0, 1, 2 and d− 2, d− 1, d have to be left invariant as well. Furthermore, since D
is odd, it has to map between the odd and even subspaces of S.

5.3. Other Coordinates
A lot of other coordinates are commonly used in the literature. They are usually valid
on a domain locally diffeomorphic to our spaces of cross-ratios. The first set of such
coordinates is (z1, z2) (usually referred to as z, z̄) such that

u = 1
z1z2

, v = (z1 − 1)(z1 − 2)
z1z2

.

From these equations we can already see that exchanging z1, z2 leads to the same u, v.
Some algebraic manipulation shows that 1+u−v

u = z1 + z2, so that z1, z2 are the roots of
the quadric

z2 − 1 + u− v

u
z + 1

u
.

This polynomial has a double root when

0 =
(1 + u− v

u

)2
− 4
u

= 1 + u2 + v2 − 2u− 2v − 2uv
u2 ,

which is the case precisely when 1 + u2 + v2 = 2u + 2v + 2uv, i.e. when our point
configuration lies in Xsl or Xtl, which we’ve been excluding from our considerations.
Inserting the expressions

u = 1
(a− ηµµw0wµ)2 + ηµµηννb2 , v = a2 + ηµµηννb

2

(a− ηµµw0wµ)2 + ηµµηννb2

for u, v, we obtain
z1/2 = 1 − ηµµw0wµa±

√
−ηµµηννb.

In particular, we see that the conditions b > 0, u, v ̸= 0,∞ imply that z1 ̸= z2 and
z1, z2 ̸= 0, 1.
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In this coordinate system, both Xss and Xtt (if nonempty) each correspond to a copy
of {

(z1, z2) ∈ C2
∣∣∣ z2 = z2

∣∣∣ Im(z1) > 0
}

and Xst, Xts each correspond to a copy of{
(z1, z2) ∈ R2 \ {0, 1}

∣∣∣ z1 > z2
}

In particular, z1, z2 are either both real (ηµµηνν = −1, then z1 > z2) or complex conju-
gates of each other (then z1 lies in the upper half-plane). In either case, we have

2b = z1 − z2√−ηµµηνν
.

Next up, we can pick ρi such that ρi + ρ−1
i = 2 − 4zi, more commonly written as

zi = 1
2 − 1

4(ρi + ρ−1
i ).

Then ρi is a root of
ρ2

i − (2 − 4zi)ρi + 1 = 0,

which has two distinct roots unless zi(zi − 1) = 0, which luckily can never be the case
on our domain.

Proposition 5.3.1. On

Zc := {(z1, z2) ∈ C | z2 = z1, Im(z1) > 0}

define
ρ1 = 1 − 2z1 + 2

√
z1(z1 − 1), ρ2 = 1 − 2z2 − 2

√
z2(z2 − 1)

where
√

· has its branch cut along the positive real axis. The two functions ρ1, ρ2 are
well-defined, smooth, and satisfy ρ1 = ρ2.

Proof. We first need to show that neither z1(z1 − 1) nor z2(z2 − 1) become a positive
real number. For zi = a+ bi we have zi(zi − 1) = a(a− 1) − b2 + (2a− 1)bi. If this is to
be real, we have 2a− 1 = 0 because b ̸= 0, i.e. a = 1

2 . Then zi(zi − 1) = −1
4 − b2 < 0.

This means that we can indeed put our branch cut along the positive real axis, and
ρ1, ρ2 are well-defined. By the same argument, we could define ρ1, ρ2 on the entire open
set {(z1, z2) ∈ C | Im(z1) > 0, Im(z2) < 0}, where it is a holomorphic function. Thus, its
restriction to the real submanifold Zc is smooth.

Lastly, we have
ρ2

1 − (2 − 4z1)ρ1 + 1 = 0.

If we conjugate this, we obtain

ρ1 − (2 − 4z2)ρ1 + 1 = 0,
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so ρ1 is one of the two roots of this equation, hence ρ1 = ρ2 or ρ−1
2 . We have ρ1 − ρ−1

1 =
4
√
z1(z1 − 1), which lies in the upper half-plane because that’s where the square root

maps to. Conversely, ρ2 − ρ−1
2 = −4

√
z2(z2 − 1) lies in the lower half-plane.

If ρ1 = ρ−1
2 , the difference

ρ2 − ρ−1
2 = ρ−1

1 − ρ1

would be the conjugate of an element of the lower half-plane, hence in the upper half-
plane. Since this is not the case, we must have ρ2 = ρ1.

Note that Im(ρ1 − ρ−1
1 ) = Im(ρ)

(
1 + 1

∥ρ∥2

)
, so ρ1 also lies in the upper half-plane.

Proposition 5.3.2. On the domain

Zr :=
{

(z1, z2) ∈ R2
∣∣∣ z1 > z2, z1, z2 ̸∈ {0, 1}

}
define

ρi := 1 − 2zi ± 2
√
zi(zi − 1)

(with + for zi > 0 and − for zi < 0) where
√

· has its branch cut along the negative
imaginary axis. Then ρ1, ρ2 are well-defined and smooth. Then ρ1, ρ2 both map to the
union of the intervals (−1, 0) ∪ (0, 1) and the upper half-circle of radius 1. If arg is the
argument function with branch cut along the negative imaginary axis, then arg(ρ1− 1

2 i) >
arg(ρ2 − 1

2 i).

Proof. When zi ∈ R, then so is zi(zi − 1), so the functions ρ1, ρ2 with the square root as
specified is well-defined. For smoothness it suffices to check that ρi depends smoothly
on zi. Since zi can attain any real value except for 0, 1, it suffices to check on the three
intervals (−∞, 0), (0, 1), (1,∞). On all of these intervals, ρi equals

f1(zi) := 1 − 2zi + 2
√
zi(zi − 1) or f2(zi) := 1 − 2zi − 2

√
zi(zi − 1).

Both of these functions can be defined in an open neighbourhood of the real axis to be
holomorphic functions. Then their restrictions to the real intervals are at least smooth.
We have

lim
zi→0

ρi = 1, lim
zi→−∞

ρi = lim
zi→∞

ρi = 0, lim
zi→1

ρi = −1,

and ρi ∈ R for z2
i > zi, i.e. for |zi| > 1. Together with the limits, this shows that

(−∞, 0) is mapped to (0, 1) and (1,∞) is mapped to (−1, 0). Furthermore, since the
derivative has no roots, these mappings are strictly monotonic (increasing in both cases).
For the interval (0, 1), note that z2

i < zi, so that the square root becomes imaginary. In
particular,

∥ρi∥2 = (1 − 2zi)2 − 4zi(zi − 1) = 1,

with Im(ρi) = 2
√
zi(1 − zi) > 0. This shows that the interval (0, 1) is mapped to the

upper half-circle
{z ∈ C | |z| = 1, Im(z) > 0} .
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All in all, ρi’s graph is a semicircle with three punctures that is being traversed anti-
clockwise exactly once. Thus, we can compare z1, z2 by comparing how “far along the
semicircle” ρ1, ρ2 are when compared to each other.

To make this last argument rigorous, note that

f ′
1/2(z) = −2 ± 2z − 1√

z(z − 1)
= ±2z − 1 ∓ 2

√
z(z − 1)√

z(z − 1)
,

which has a root only if 2z − 1 = ±2
√
z(z − 1). If this is the case, then (2z − 1)2 =

4z2 − 4z + 1 = 4z2 − 4z, i.e. 1 = 0, which is a contradiction. Thus, neither f1 nor f2
have critical points. As a consequence, the function

R\ → (0, 2π), t 7→ arg(ρi(t) − 1
2 i)

(mapping 0 to arg(1 − 1
2 i) and 1 to arg(−1 − 1

2 i)), which is continuous on R and smooth
on R \ {0, 1}, must be monotonic on each of its three intervals of differentiability. Fur-
thermore, the derivative is positive on all three intervals, which implies the claim.

With exactly these choices of square roots, we defined ρ1, ρ2 such that

2b = z1 − z2√−ηµµηνν
.

Lastly, introduce χ1, χ2 with
exp(χ1) = ρi.

Then Zc corresponds to{
(χ1, χ2) ∈ C

∣∣∣ χ2 = χ1, 0 < Im(χ1) < π, Im(sinh2(χ1/2)) < 0
}
.

Using that Im(sinh2(χ1/2)) = 1
2 sinh(Re(χ)) sin(Im(χ)), this equals

{(χ1, χ2) ∈ C | χ2 = χ1, 0 < Im(χ1) < π,Re(χ1) < 0} .

From here, we can in particular also gather that in (ρ1, ρ2)-coordinates, the domain Zc

is exactly
{(ρ1, ρ2) ∈ C | ρ2 = ρ1, Im(χ1),Re(χ1) > 0} .

Similarly, in (χ1, χ2)-coordinates, Zr corresponds to

{(χ1, χ2) ∈ (R<0 + {0, iπ}) ∪ {i(0, π)} | χ1 “further along than” χ2} .

Thus, we find that in (χ1, χ2)-coordinates, either χ1 is confined to be inside the strip
R<0 + (0, π)i and then χ2 is its complex conjugate, or both are confined to the strips
boundary, where – seen from −∞ an measured in anticlockwise direction, χ1 is “further
along” the boundary than χ2.

72



5.3.1. Differential Operators

Proposition 5.3.3. We have

u∂u = 1
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2)

v∂v = −(1 − z1)(1 − z2)
z1 − z2

(z1∂z1 − z2∂z2).

Proof. Starting from u = (z1z2)−1 and v/u = (1 − z1)(1 − z2), we have
∂u

∂zi
= − u

zi
,

∂v

∂zi
= v

zi(zi − 1) .

Thus,

∂zi = ∂u

∂zi
∂u + ∂v

∂zi
∂v

= − u

zi
∂u + v

zi(zi − 1)∂v

zi∂zi = −u∂u + 1
zi − 1v∂v.

Solving this 2 × 2 system of linear equations yields(
u∂u

v∂v

)
= 1
z2 − z1

(
z1 − 1 1 − z2

(z1 − 1)(z2 − 1) −(z1 − 1)(z2 − 1)

)(
z1∂z1

z2∂z2

)
,

as claimed.

As a consequence, we have

(1 − u− v)∂v = 1 − u− v

v
v∂v = 2 − z1 − z2

z1 − z2
(z1∂z1 − z2∂z2)

u∂u + v∂v = 1
z1 − z2

(z1(1 − z1)(1 − (1 − z2))∂z1 − z2(1 − z2)(1 − (1 − z1))∂z2)

= − z1z2
z1 − z2

((z1 − 1)∂z1 − (z2 − 1)∂z2).

Proposition 5.3.4. For i = 1, 2 we have

4 ρi∂ρi

ρi − ρ−1
i

= −∂zi .

Proof. Recall that 4zi = 2 − ρi − ρ−1
i . Differentiating this, we obtain

∂zi

∂ρi
= 1

4(ρ−2
i − 1),

hence
4ρi∂ρi = ρi(ρ−2

i − 1)∂zi = −(ρi − ρ−1
i )∂zi .

Multiplying through by ρi − ρ−1
i yields the claim.
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From this we can conclude that

(ρi∂ρi)2 = −1
4ρi∂ρi(ρi − ρ−1

i )∂zi = −1
4(ρi − ρ−1

i )ρi∂ρi∂zi − 1
4(ρi + ρ−1

i )∂zi

= 1
16(ρi − ρ−1

i )2∂2
zi

−
(1

2 − zi

)
∂zi = −zi(1 − zi)∂2

zi
−
(1

2 − zi

)
∂zi .

Proposition 5.3.5. Lastly, we have

∂χi = ρi∂ρi .

Proof. Recall that ρi = exp(χi), then

∂χi = ∂ρi

∂χi
∂ρi = ρi∂ρi

5.3.2. Casimir Operator

The differential operator from Corollary 5.1.4 then becomes

−2 − z1 − z2
z1 − z2

(z1∂z1 − z2∂z2)
((1 − z1)(1 − z2)

z1z2
(z1∂z1 − z2∂z2) − ∆1 + ∆2

2

)
+ 2
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2)
( 1
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2) + ∆2 − d

2

)
+z1 + z2
z1 − z2

((z1 − 1)∂z1 − (z2 − 1)∂z2)
(

− z1z2
z1 − z2

((z1 − 1)∂z1 − (z2 − 1)∂z2) − ∆1 − ∆2
2

)
+∆2

2 − d∆2
2 ,

which equals

−z1(1 − z1)∂2
z1 −

(∆1 − ∆2
2 + 1 − (1 − ∆2 + 1)z1

)
∂z1

−z2(1 − z2)∂2
z2 −

(∆1 − ∆2
2 + 1 − (1 − ∆2 + 1)z2

)
∂z2

− d− 2
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2)

+∆2(∆2 − d)
2 .
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Next, we move to (ρ1, ρ2) coordinates. Here we get

(ρ1∂ρ1)2 −
(∆1 − ∆2 + 1

2 − (1 − ∆2)z1

)
∂z1

+(ρ2∂ρ2)2 −
(∆1 − ∆2 + 1

2 − (1 − ∆2)z2

)
∂z2

− d− 2
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2) + ∆2(∆2 − d)
2

=(ρ1∂ρ1)2 + (2∆1 + (1 − ∆2)(ρ1 + ρ−1
1 )) ρ1∂ρ1

ρ1 − ρ−1
1

+(1 ↔ 2)

+ d− 2
ρ1 + ρ−1

1 − ρ2 − ρ−1
2

(
(ρ1 − ρ−1

1 )ρ1∂ρ1 − (ρ2 − ρ2)−1ρ2∂ρ2

)
+∆2(∆2 − d)

2

=(ρ1∂ρ1)2 +
(

∆1
1 + ρ−1

1
1 − ρ−1

1
+ (1 − ∆1 − ∆2)1 + ρ−2

1
1 − ρ−2

1

)
ρ1∂ρ1

+(1 ↔ 2)

+d− 2
2

(
1 + ρ−1

1 ρ2

1 − ρ−1
1 ρ2

(ρ1∂ρ1 − ρ2∂ρ2) + 1 + (ρ1ρ2)−1

1 − (ρ1ρ2)−1 (ρ1∂ρ1 + ρ2∂ρ2)
)

+∆2(∆2 − d)
2 .

Lastly, for (χ1, χ2)-coordinates note that the operator already only contains expres-
sions of the shape ρi∂ρi , so it becomes easy to translate the operator:

∂2
χ1 + ∂2

χ2 +
(1 − ∆2

2

)2
+
(
d− ∆2 − 1

2

)2
− 1

22 −
(
d− 1

2

)2

+
(

∆1 coth
(
χ1
2

)
+ (1 − ∆1 − ∆2) coth(χ1)

)
∂χ1

+
(

∆1 coth
(
χ2
2

)
+ (1 − ∆1 − ∆2) coth(χ2)

)
∂χ2

+d− 2
2

(
coth

(
χ1 − χ2

2

)
(∂χ1 − ∂χ2) + coth

(
χ1 + χ2

2

)
(∂χ1 + ∂χ2)

)
Define

k ∈ C3, k =
(

∆1,
d− 2

2 ,
1 − ∆1 − ∆2

2

)
.
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Then this becomes

∂2
χ1 + ∂2

χ2 +
(
k1
2 + k3

)2
+
(
k1
2 + k2 + k3

)2
− 1

22 −
(
k2 + 1

2

)2

+
(
k1 coth

(
χ1
2

)
+ 2k3 coth(χ1)

)
∂χ1 +

(
k1 coth

(
χ2
2

)
+ 2k3 coth(χ2)

)
∂χ2

+k2

(
coth

(
χ1 − χ2

2

)
(∂χ1 − ∂χ2) + coth

(
χ1 + χ2

2

)
(∂χ1 + ∂χ2)

)
. (5.2)

5.3.3. Dirac Operator

We will now represent the differential operators E,F±, G,H± in the different coordi-
nates.

We have

E = −
((1 − z1)(1 − z2)

z1z2
+ 1 − 1

z1z2

) 1
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2)

+
((1 − z1)(1 − z2)

z1z2
− 1 − 1

z1z2

)(1 − z1)(1 − z2)
z1z2

(z1∂z1 − z2∂z2) − ∆1 − ∆2 + d

2

= (z1 − 1)∂z1 + (z2 − 1)∂z2 − ∆1 − ∆2 + d

2
= (z1 − 1)∂z1 + (z2 − 1)∂z2 + k2 + 2k3

G = − 2
z1 − z2

(z1(1 − z1)∂z1 − z2(1 − z2)∂z2) + 2 − z1 − z2
z1 − z2

(z1∂z1 − z2∂z2) + ∆1 − ∆2 + d

2

= 1
z1 − z2

((z1 − z2)z1∂z1 − (z2 − z1)z2∂z2) + ∆1 − ∆2 + d

2
= z1∂z1 + z2∂z2 + 2k1 + k2 + 2k3.

For F±, H±, recall that
2b = z1 − z2√−ηµµηνν

,

so that
a

b
= −

√
−ηµµηννηµµw0wµ

z1 + z2 − 2
z1 − z2

a− w0wµηµµ

b
= −w0wµηµµ

√
−ηµµηνν

z1 + z2
z1 − z2

.

This gives us

F± = 1
z1z2

(z1 − z2) z1z2
z1 − z2

((z1 − 1)∂z1 − (z2 − 1)∂z2) − ηµµηνν
d− 2

2 (1 ± 1)(−ηµµηνν)z1 + z2 − 2
z1 − z2

= (z1 − 1)∂z1 − (z2 − 1)∂z2 + (1 ± 1)k2
z1 + z2 − 2
z1 − z2

H± = (z1 − z2) 1
z1 − z2

(z1∂z1 − z2∂z2) − wµwνηννηµµ(−ηµµηνν)d− 2
2 (1 ± 1)z1 + z2

z1 − z2

= z1∂z1 − z2∂z2 + wµwν(1 ± 1)k2
z1 + z2
z1 − z2

.
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Now, we go to (ρ1, ρ2)-coordinates. For that, note that

zi∂zi = (−2 + ρi + ρ−1
i ) ρi∂ρi

ρi − ρ−1
i

= 1 − ρi

1 + ρi
ρi∂ρi = −1 − ρ−1

i

1 + ρ−1
i

ρi∂ρi

(zi − 1)∂zi = (2 + ρi + ρ−1
i ) ρi∂ρi

ρi − ρ−1
i

= 1 + ρ−1
i

1 − ρ−1
i

ρi∂ρi .

Thus,

E = 1 + ρ−1
1

1 − ρ−1
1
ρ1∂ρ1 + 1 + ρ−1

2
1 − ρ−1

2
ρ2∂ρ2 + k2 + 2k3

G = −1 − ρ−1
1

1 + ρ−1
1
ρ1∂ρ1 − 1 − ρ−1

2
1 + ρ−1

2
ρ2∂ρ2 + 2k1 + k2 + 2k3

F± = 1 + ρ−1
1

1 − ρ−1
1
ρ1∂ρ1 − 1 + ρ−1

2
1 − ρ−1

2
ρ2∂ρ2 + (1 ± 1)k2

(1 + ρ1)(1 + ρ−1
1 ) + (1 + ρ2)(1 + ρ−1

2 )
(ρ1 − ρ2)(1 − (ρ1ρ2)−1)

H± = −1 − ρ−1
1

1 + ρ−1
1
ρ1∂ρ1 + 1 − ρ−1

2
1 + ρ−1

2
ρ2∂ρ2 − wµwν(1 ± 1)k2

(1 − ρ1)(1 − ρ−1
1 ) + (1 − ρ2)(1 − ρ−1

2 )
(ρ1 − ρ2)(1 − (ρ1ρ2)−1)

and in (χ1, χ2) coordinates

E = coth
(
χ1
2

)
∂χ1 + coth

(
χ2
2

)
∂χ2 + k2 + 2k3

G = − tanh
(
χ1
2

)
∂χ1 − tanh

(
χ1
2

)
∂χ2 + 2k1 + k2 + 2k3

F± = coth
(
χ1
2

)
∂χ1 − coth

(
χ2
2

)
∂χ2 + (1 ± 1)k2

cosh2 (χ1
2
)

+ cosh2 (χ2
2
)

sinh
(

χ1−χ2
2

)
sinh

(
χ1+χ2

2

)
H± = − tanh

(
χ1
2

)
∂χ1 + tanh

(
χ1
2

)
∂χ2 − wµwν(1 ± 1)k2

sinh2 (χ1
2
)

+ sinh2 (χ2
2
)

sinh
(

χ1−χ2
2

)
sinh

(
χ1+χ2

2

)
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6. Dunkl Operators

Let us now shift gears and talk about the theory developed around the CS model. Recall
from the introduction that everything is phrased in terms of root system, so we had best
begin by recalling some basic facts about (abstract) root systems. A more thorough
introduction to root systems and in particular their classification (which we won’t touch
on) can be found at [Bou68, chap. VI] and [Hum72, part III]. (Note that [Hum72]
restricts himself to reduced root systems, which we will not.)

6.1. Root Systems
Notation 6.1.1. Let a be a finite-dimensional real vector space with (positive-definite)
inner product.

(a) For any element α ∈ a∗ write Xα ∈ a for the unique element such that α(Y ) =
⟨Xα, Y ⟩ for all y ∈ a.

(b) For α ∈ a∗ write
α∨ := 2Xα

∥Xα∥2 .

(c) For α ∈ a∗ \ {0} define rα ∈ GL(a∗) by rα(β) := β − β(α∨)α. As an abuse of
notation, also define rα ∈ GL(a) by rα(X) := X − α(X)α∨. This is the reflection
along α.

Definition 6.1.2. (a) A finite subset R ⊆ a∗ \ {0} is called an (abstract) root system
if

a) R spans a∗.
b) For each α ∈ R we have rα(R) = R.
c) For each α, β ∈ R we have α(β∨) ∈ Z.

The elements α ∈ R are then called roots, and the α∨ are called coroots. The set
R∨ = {α∨ | α ∈ R} is also an abstract root system.

(b) The sets
R0 := R \ 1

2R, R0 := R \ 2R

of inmultipliable and indivisible roots, respectively, are also root systems.

(c) The group W ≤ GL(a∗) generated by the rα (α ∈ R) is called the Weyl group.
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(d) Write ZR and ZR∨ for the lattices generated by R,R∨. They are called the root
and coroot lattices, respectively.

(e) The set
P := HomZ(ZR∨,Z) =

{
λ ∈ a∗ ∣∣ ∀α ∈ R : λ(α∨) ∈ Z

}
is called the weight lattice.

(f) Define
H := HomZ(P,C×)

to be the complex torus dual to P .

Lemma 6.1.3. R and R0 have the same root lattice, R and R0 have the same coroot
lattice and hence the same weight lattice and complex torus H.

Proof. Because of (R0)∨ = (R∨)0, we only have to show that R and R0 have the same
root lattice. This follows from R ⊆ ZR0.

Definition 6.1.4. A subset R+ ⊆ R is called a set of positive roots if

(a) R = R+ ⊔ (−R+) (write R− := −R+).

(b) 0 is not contained in the convex hull of R+.

Write R0,± and R±
0 for R0 ∩R± and R0 ∩R±.

A root α ∈ R+ is called simple if for every way of writing it as

α =
r∑

i=1
ziβi

for βi ∈ R+ and zi ̸= 0 we have r = 1, β1 = α, and z1 = 1.

A set of positive roots of R then also gives a set of positive roots of R∨, and by
considering the cones generated by R+, R∨+ also orders on ZR,ZR∨. A weight µ is
called dominant if µ((ZR∨)+) ⊆ R≥0, write P+ for the set of dominant weights.

Lemma 6.1.5. For every root system there exists a set of positive roots.

Proof. Let X ∈ a so that no root α ∈ R satisfies α(X) = 0, then

R+ := {α ∈ R | α(X) > 0}

does the job. Such an X exists for the following reason: for α ∈ R write Hα := ker(α).
Then a \ Lα is open and dense in a. Since a is a finite-dimensional vector space, it is a
complete metric space, so by the Baire category theorem, the (even finite!) intersection

{X ∈ a : ∀α ∈ R : α(X) ̸= 0} =
⋂

α∈R

(a \Hα)

is dense, hence nonempty.
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In particular, since the (closures of the) convex hulls of R+ and R− are supposed not
to intersect and are bounded, the separating hyperplane theorem tells us that every set
of positive roots can be found this way.

Theorem 6.1.6. S is a basis for a∗, and every root α ∈ R can be expanded in terms of
S with either only nonnegative or only nonpositive coefficients.

Proof. See [Hum72, section 10.1, theorem’].

Lemma 6.1.7. Let α ∈ S, then rα permutes the positive roots that are not multiples of
α. In other words:

rα(R+) = R+ \ Rα ∪
{

−cα
∣∣∣ cα ∈ R+

}
.

Proof. See [Bou68, chap. VI, §1, no. 6, cor. 1].

Let α1, . . . , αn ∈ R0 be simple roots, then so are α∨
1 , . . . , α

∨
n ∈ R∨. This means that

they are a basis of the coroot lattice. Define ωi(α∨
j ) := δij . They form a basis of the

lattice dual to ZR∨ (the lattice of weights) and are called the fundamental weights.
Furthermore, define ri := rαi , then W is a finite Coxeter group generated by r1, . . . , rn

(see [Bou68, chap. VI, §1, no. 5]).
To H we associate the polynomial ring C[H] that is the ring generated by functions of

the shape e(λ) (λ ∈ P ). Here e(λ) : H → C, ϕ 7→ ϕ(λ). They satisfy e(λ)e(µ) = e(λ+µ),
and evidently, C[H] = C[e(ω1), . . . , e(ωn)]. Note that via the map

H → (C×)n, ϕ 7→ (ϕ(ω1), . . . , ϕ(ωn)),

H is a complex manifold of dimension n and it therefore makes sense to not only speak
about polynomials on H (or localisations thereof), but also of holomorphic functions.
Note that R’s linear action on a∗ induces an action on a, and together they leave
R∨,ZR,ZR∨, P,C[H] invariant. In particular, if U ⊆ H is an open subset invariant
under W , then O(U), the space of holomorphic functions on U is also acted upon by W .

Define

Hreg := {ϕ ∈ H | ∀α ∈ R : ϕ(α) ̸= 1} = {ϕ ∈ H | ∀w ∈ W : w(ϕ) ̸= ϕ}

to be the set of regular points of H under the action of W . This is an open subvari-
ety whose coordinate ring C[Hreg] is the localisation of C[H] in the multiplicative set
containing all 1 − e(α) (α ∈ R). For details about C[H], consult [Bou68, chap. VI, §3].

6.2. Differential Reflection Operators
The Dunkl operators are going to be (mildly singular) differential reflection operators.
What that means is what we’re going to explore in this section. Fix a root system R,
a set of positive roots R+, and write h = a ⊗ C for the complexification of R’s carrier
space.

The three keywords here are “singular”, “differential”, and “reflection”. We’re going
to address each of them in turn:
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Definition 6.2.1. (a) Define R ⊆ C(H) (the fraction field of C[H]) to be the subal-
gebra generated by 1 and (1 − e(−α))−1 (α ∈ R).

(b) Write S(h) for the symmetric (tensor) algebra of h, interpreted as polynomial func-
tions on h∗. Write the elements as ∂p (for p ∈ S(h)).

(c) Write C[W ] for the group algebra of W .

We ultimately want to turn their tensor product into an algebra. For that we proceed
stepwise.

Proposition 6.2.2. S(h) acts on R by means of derivations.

Proof. S(h) acts on C[H] via ∂pe(λ) = p(λ)e(λ) (λ ∈ P ), which is a (higher-order)
derivation. This can be extended to C(H), so we just need to show that R is left
invariant.

Let ξ ∈ h and α ∈ R, then

∂ξ
1

1 − e(−α) = α(ξ) −e(−α)
(1 − e(−α))2

= α(ξ)
(

1 − 1
1 − e(−α)

) 1
1 − e(−α) ∈ R.

Using this action, we can iterate the construction from [Bou58, chap. VIII, §1, no. 4,
prop. 7] (using σ = id, d = ∂ξi

, for a basis ξ1, . . . , ξn ∈ h) to obtain an algebra structure
on R ⊗ S(h) that exactly captures the differential operator behaviour. Call this algebra
DR, the algebra of R-valued differential operators.

Proposition 6.2.3. W acts on DR by algebra automorphisms.

Proof. Note that W leaves R invariant, hence (1−e(−α))−1 for any α ∈ R is mapped to
R again. This shows that W acts both on R and on S(h) by algebra automorphisms, so
let’s show that the same holds for DR. By expanding in terms of a basis of h, separating
degrees, and induction the question reduces to

w · (∂ξf) = (w · ∂ξ)(w · f)

for f ∈ R and ξ ∈ h (for fξ it is evidently true since f∂ξ = f ⊗ ξ, so it follows from
definition).

We have

w ·(∂ξf) = w ·(∂ξ(f)⊗1)+w ·(f⊗ξ) = (∂w(ξ) ·(w ·f))⊗1+(w ·f)⊗w(ξ) = ∂w(ξ)w ·f.

Corollary 6.2.4. DRR := DR ⊗ C[W ] is an associative algebra when equipped with the
product

(F ⊗ w)(F ′ ⊗ w′) = F (w · F ′) ⊗ ww′
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Proof. Let F, F ′, F ′′ ∈ DRR and w,w′, w′′ ∈ W . Then

(F (w · F ′))(ww′ · F ′′) ⊗ (ww′)w′′ = F ((w · F ′)(ww′ · F ′′)) ⊗ w(w′w′′)
= F (w · (F ′(w′ · F ′′))) ⊗ w(w′w′′)
= (F ⊗ w)(F ′(w′ · F ′′) ⊗ w′w′′)
= (F ⊗ w)((F ′ ⊗ w′)(F ′′ ⊗ w′′)).

The algebra DRR is the algebra of R-valued differential reflection operators. It acts on
C(H) by multiplication (R), derivation (S(h)) and reflection (C[W ]), and similarly on
all localisations of C[H] that contain R, in particular on C[Hreg]. Furthermore, it also
acts on the ring O(U) of holomorphic functions on a W -invariant open subset U ⊆ Hreg.

Proposition 6.2.5. Let P ∈ DRR such that Pf = 0 for all f ∈ C[H], then P = 0.

Proof. Similar to [HS94, proposition 1.3.7].

Later we will also be interested in how these differential reflection operators act in
different representations of W .

Definition 6.2.6. Let (π, V ) be a representation of W , then define

βπ : DRR → DR ⊗ End(V ),
∑

w∈W

pww 7→ pwπ(w).

Proposition 6.2.7. Let π satisfy π(ww′) = π(w′w) for all w,w′ ∈ W , let P,Q ∈ DRR

and let wQw−1 = Q for all w ∈ W . Then

βπ(PQ) = βπ(P )βπ(Q).

Proof. Write
P =

∑
w∈W

pww, Q =
∑

w∈W

qww,

then Q’s invariance implies that

wQw−1 =
∑

w′∈W

wqw′w′w−1

=
∑

w′∈W

(w · qw′)ww′w−1

=
∑

w′∈W

(w · qw−1w′w)w′

=
∑

w′∈W

qw′w′,
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i.e. that w · qw′ = qww′w−1 for all w,w′. Then

βπ(PQ) =
∑

w,w′∈W

βπ(pwwqw′w′)

=
∑

w,w′∈W

pw(w · qw′)π(ww′)

=
∑

w,w′∈W

pwqww′w−1π(ww′)

=
∑

w,w′∈W

pwqw′π(w′w)

=
∑

w,w′∈W

pwqw′π(w)π(w′)

=
∑

w∈W

pwπ(w)
∑

w′∈W

qw′π(w′)

= βπ(P )βπ(Q).

6.3. Dunkl Operator
Now for the protagonist of this chapter:

Definition 6.3.1. Let k = (kα)α∈R satisfy kα = kw(α) for all w ∈ W , then we call k a
multiplicity vector.

Let k be a multiplicity vector and ξ ∈ h. The Dunkl–Cherednik operator (henceforth
mostly referred to as Dunkl operator) associated to this data is

Tξ(k) := ∂ξ +
∑

α∈R+

kαα(ξ) 1
1 − e(−α)(1 − rα) − ρ(k)(ξ) ∈ DRR

for 2ρ(k) = ∑
α∈R+ kαα.

Note that the two main sources for this chapter are [Opd00] and [HS94] who use
different definitions of Tξ(k) that have very different properties but ultimately have sums
of squares that reduce to the same differential operator in the trivial representation. We
will be using [Opd00]’s definition and will only refer to [HS94]’s definition later on.

Proposition 6.3.2. Tξ(k) acts on C[H].

Proof. We have ∂ξe(λ) = λ(ξ)e(λ), so the derivative operator leaves C[H] invariant.
Same goes for the scalar ρ(k)(ξ). So it remains to see that terms of the shape ∆α :=
(1 − e(−α))−1(1 − rα) leave C[H] invariant as well. Let λ ∈ P , we will show that e(λ)
is mapped to C[H].
“λ(α∨) = 0”: In this case we have rα · e(λ) = e(λ), so ∆αe(λ) = 0.
“n := λ(α∨) > 0”: Then we have

(1 − rα) · e(λ) = e(λ) − e(λ− nα) = e(λ)(1 − e(−α)n).
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This is evidently divisible by 1 − e(−α) and we get

∆αe(λ) = e(λ)(1 + e(−α) + · · · + e((1 − n)α)).

“−n := λ(α∨) < 0”: Then we have

(1 − rα) · e(λ) = e(λ) − e(λ+ nα) = e(rα(λ))(e(−nα) − 1)
= −e(rα(λ))(1 − e(−nα)).

Similarly to before this is divisible by 1 − e(−α) and yields

∆αe(λ) = −e(rα(λ))(1 + e(−α) + · · · + e((1 − n)α)).

Theorem 6.3.3. Let k be a multiplicity vector, let ξ, η ∈ h, then Tξ(k) and Tη(k)
commute.

Proof. This is the topic of [Opd00, section 2.3]. The idea of the proof is as follows:
we know that Tξ(k), Tη(k) commute if they commute as endomorphisms of C[H]. So
for kα ≥ 0 (α ∈ R) we construct a basis of C[H] that simultaneously diagonalises
all Dunkl operators (with the same multiplicity vector). This is done by constructing a
monomial order and an inner product on C[H], with respect to which all Tξ(k) are upper
triangular and symmetric. If we then take an ordered set of monomials, apply Gram–
Schmidt orthogonalisation, we obtain a basis that diagonalises all Tξ(k) simultaneously.
This implies that as endomorphisms of C[H], the Dunkl operators commute.

For more general multiplicity vectors, we note that the Dunkl operators depend alge-
braically on k, hence so does their commutator. This shows that the set of multiplicity
vectors for which [Tξ(k), Tη(k)] for all ξ, η ∈ h∗ is Zariski-closed and contains the set of
nonnegative multiplicity vectors. Since that set is already Zariski-dense, we conclude
that our claim holds for all multiplicity vectors.

6.4. Degenerate Affine Hecke Algebras
To each root systemR we can associate a family of finitely generated algebras parametrised
by multiplicity vectors.

Recall that we chose α1, . . . , αn to be the simple roots of R0. Define

ki := 1
2k 1

2 αi
+ kαi

where k 1
2 αi

is zero if 1
2αi ̸∈ R.

Definition 6.4.1. Let k be a multiplicity vector. The degenerate affine Hecke algebra
(dAHA) associated to the root system R (and a subset R+ of positive roots) and the mul-
tiplicity vector k is the associative algebra H(R+, k) := S(h)⊗C[W ] with a multiplication
such that

S(h) → H(R+, k), p 7→ p⊗ 1
C[W ] → H(R+, k), f 7→ 1 ⊗ f
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are algebra homomorphisms, such that pf = p⊗f for p ∈ S(h), f ∈ C[W ], and such that

rip = ri(p)ri − ki
p− ri(p)
α∨

i

. (6.1)

Proposition 6.4.2. Let k be a multiplicity vector. The maps

W ∋ w 7→ w, h ∋ ξ 7→ Tξ(k)

extend to a ring homomorphism H(R+, k) → DRR that maps to the subring of operators
that leave C[H] invariant.

Proof. Evidently, the map W → DRR extends linearly to C[W ]. Because of Theo-
rem 6.3.3, the map h → DRR extends to S(h). Thus, it remains to show that the
commutation relations between C[W ] and S(h) match. Let i = 1, . . . , n and let p ∈ S(h)
be homogeneous. Let’s show the relation (6.1) for ri and p by induction in the degree
of p.
“deg(p) = 0”: In this case ri(p) = p, so that in the Hecke algebra we have rip = pri.
Similarly, in terms of differential reflection operators, p just maps to a constant, which
commutes with C[W ].
“deg(p) = 1”: Let p = ξ ∈ h. Then

riTξ(k)ri = ri∂ξri +
∑

α∈R+

kαα(ξ)ri

( 1
1 − e(−α)(1 − rα) − 1

2

)
ri

= ∂ri(ξ) +
∑

α∈R+

kαα(ξ)
( 1

1 − e(−ri(α))(1 − rirαri) − 1
2

)

= ∂ri(ξ) +
∑

α∈R+

kαα(ξ)
( 1

1 − e(−ri(α))(1 − rri(α)) − 1
2

)

= ∂ri(ξ) +
∑

α∈R+

kri(α)ri(α)(ri(ξ))
( 1

1 − e(−ri(α))(1 − rri(α)) − 1
2

)

the latter due to k’s Weyl invariance, and because of how W acts on h∗ and h. Substi-
tuting ri(α) → α yields

∂ri(ξ) +
∑

α∈ri(R+)
kαα(ri(ξ))

( 1
1 − e(−α)(1 − rα) − 1

2

)
.

By Lemma 6.1.7, we know what ri(R+) looks like. In particular, since we took k 1
2 αi

= 0
if 1

2αi ̸∈ R, we don’t particularly need to know if αi is divisible or not. In both cases we
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get

riTξ(k)ri = Tri(ξ)(k) − kαiαi(ri(ξ))
( 1

1 − e(−αi)
(1 − ri) − 1

2

)

− k 1
2 αi

1
2αi(ri(ξ))

 1
1 − e

(
−1

2αi

)(1 − ri) − 1
2


+ kαi(−αi)(ri(ξ))

( 1
1 − e(αi)

(1 − ri) − 1
2

)

+ k 1
2 αi

(
−1

2αi

)
(ri(ξ))

 1
1 − e

(
1
2αi

) − 1
2


= Tri(ξ)(k) + αi(ξ)

(
−kαi − 1

2k 1
2 αi

+ kαi(1 − ri) + 1
2k 1

2 αi
(1 − ri)

)
= Tri(ξ)(k) − kiαi(ξ)ri

= Tri(ξ)(k) − ki
ξ − (ξ − αi(ξ)α∨

i )
α∨

i

ri.

Multiplying with ri on the right gives

riTξ(k) = Tri(ξ)(k)ri − ki
ξ − ri(ξ)
α∨

i

as desired.
“deg(p) → deg(p+1)”: Let ξ ∈ h. Write p(T (k)) for the polynomial of Dunkl operators

obtained for p. Then by induction hypothesis (using the deg(p) and 1 cases)

riTξ(k)p(T (k)) = Tri(ξ)(k)rip(T (k)) − ki
ξ − ri(ξ)
α∨

i

(T (k))p(T (k))

= Tri(ξ)(k)ri(p)(T (k))ri − kiTri(ξ)(k)p− ri(p)
α∨

i

(T (k))

− ki
ξ − ri(ξ)
α∨

i

(T (k))p(T (k))

= ri(ξp)(T (k))ri − ki
ξp− ri(ξp)

α∨
i

(T (k)).

In particular, the Hecke algebra exists, is an associative algebra, and can be realised
as subalgebra of End(C[H]).

Corollary 6.4.3. In particular, any DRR-module is a H(R+, k)-module. This includes,
C[H],C[Hreg],C[H], as well as O(U) for U ⊆ Hreg open and W -invariant.

6.5. Representation Theory of dAHAs
In order to understand H(R+, k)-modules better, our first goal is to describe what
H(R+, k)’s central characters look like.
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6.5.1. Central Characters

Proposition 6.5.1. The centre of H(R+, k) is S(h)W .

Proof. Let P ∈ Z(H(R+, k)), say

P =
∑

w∈W

pww.

Let ξ ∈ h be regular, then

Pξ − ξP =
∑

w∈W

pw(wξ − ξw) =
∑

w∈W

pw(w(ξ) − ξ)w + lower-order terms.

The highest-order term in front of w will be pw(w(ξ) − ξ), which has to be zero. For
w ̸= 1, this implies pw = 0, so that P ∈ S(h).

Next up, we know that P = p1 has to commute with all ri, so that

rip1 − p1ri = (ri(p1) − p1)ri − ki

α∨
i

(p1 − ri(p1)) = 0.

Since ri, 1 are linearly independent over S(h), we obtain ri(p1) = p1, hence that p1 is
invariant under the group generated by all the ri, i.e. by W .

Proposition 6.5.2. (a) Every algebra morphism S(h)W is given by

χλ : z 7→ z(λ)

for some λ ∈ h∗.

(b) Where χλ = χµ (on S(h)W ) iff Wλ = Wµ.

Proof. (a) Let χ : S(h)W → C be an algebra homomorphism. If χ = 0, take λ = 0.
Otherwise, χ is surjective and we have S(h)W / ker(χ) ∼= C. This shows that ker(χ)
is an ideal whose ring of residues is a field. Thus, ker(χ) is a maximal ideal.
Write now s : S(h) → S(h)W for the symmetriser (linear map)

p 7→ 1
#W

∑
w∈W

w(p).

For p ∈ S(h), z ∈ S(h)W we have s(pz) = s(p)z = s(p)s(z).
Let p1, . . . , pr ∈ S(h), z1, . . . , zr ∈ S(h)W such that ∑r

i=1 pizi = 1, then

1 = χ(s(1)) = χ

(
s

(
r∑

i=1
sizi

))
=

r∑
i=1

χ(s(sizi)) =
r∑

i=1
χ(s(si)zi) = 0,

so there is no S(h)-linear combination of elements of ker(χ) that is 1. This shows
that I := S(h) ker(χ) is a proper ideal of S(h). As a consequence of Zorn’s lemma,
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there is a maximal ideal m containing I. Then, ⇕ ∩ S(h)W is a proper ideal of
S(h)W that contains ker(χ), hence it equals ker(χ).
By Hilbert’s Nullstellensatz, there is now a λ ∈ h∗ such that m = ker(χλ). In
particular, for every z ∈ S(h)W we have

χ(z)1 + m = (χ(z)1 + (m ∩ S(h)W )) + m

= (χ(z)1 + ker(χ)) + m

= (z + ker(χ)) + m

= z + m

= χλ(z)1 + m,

hence χ = χλ|S(h)W .

(b) “⇐”: Evidently χλ and χw(λ) are equal on S(h)W for all w ∈ W .
“⇒”: Assume now that χλ, χµ are equal on S(h)W . Let m,m′ be the kernels (in
S(h)) of χλ, χµ, respectively. Since χλ and χµ are equal on invariants, we have
m ∩ S(h)W = m′ ∩ S(h)W .
Let

f1 ∈
⋂

w∈W

w(m), f2 ∈
⋂

w∈W

w(m′),

then s(f1) ∈ m and s(f2) ∈ m′ are both invariant, hence

s(f1 + f2) = s(f1) + s(f2) ∈ m ∩ S(h)W = m′ ∩ S(h)W ̸= S(h)W .

In particular, s(f1 + f2) ̸= 1, which implies that f1 + f2 ̸= 1 (since 1 is invariant).
Thus,

1 ̸∈
⋂

w∈W

w(m) +
⋂

w∈W

w(m′) =
⋂

w,w′∈W

(w(m) + w′(m′)).

This shows that there are w,w′ ∈ W such that w(m) + w′(m′) ̸= (1), and since
they are both maximal ideals that means that they are equal. This then implies
w(λ) = w′(µ), and hence that λ, µ lie in the same W -orbit.

6.5.2. Intertwiners

Our goal is to understand some/most of the simple H(R+, k)-modules and one way of
achieving this is to look how some subalgebras of H(R+, k) act on them, in particular, by
analysing them as C[W ]-modules and as S(h)-modules. Let M be a H(R+, k)-module,
let χ be a central character of C[W ], then write M [χ] for the isotypic component as
C[W ]-modules; in particular write MW for the isotypic component associated with the
trivial representation.

For λ ∈ h∗ write

Mλ := {v ∈ M | ∀p ∈ S(h) : p · v = p(λ)v}
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for the isotypic component with central character χλ of the S(h)-module M . Mλ is
called the λ-weight space.

We’d like to establish some relations among the weight spaces and between the weight
spaces and MW . For that it is useful to look for elements of H(R+, k) that intertwine
between the weight spaces, i.e. P ∈ H(R+, k) such that PMλ = Mw(λ) for some w ∈ W .

Definition 6.5.3. Let i = 1, . . . , n, then define

Ii := riα
∨
i + ki = −α∨

i ri − ki.

Recall that α1, . . . , αn are the simple roots of R0 and

ki = 1
2k 1

2 αi
+ kαi .

These I1, . . . , In are going to be the intertwiners associated to the simple reflections
r1, . . . , rn. To see that we can define intertwiners for every element of W , we need to
establish some properties first. For that, let’s begin with a few lemmas that are going
to be useful.

Lemma 6.5.4. Define

Fi := span {pw | w ∈ W,p ∈ S(h), ℓ(w) ≤ i} .

Then (Fi)i∈N0 is a filtration on H(R+, k).
Here ℓ(w) refers to the shortest possible length of an expression of w in terms of the

ri. This means that

ℓ(w) = min {r | ∃i1, . . . , ir ∈ {1, . . . , n} : w = ri1 · · · rir } .

Any expression ri1 · · · rℓ(w) = w (of length ℓ(w)) is called reduced.

Proof. Evidently we have Fi ⊆ Fi+1 and F#W = H(R+, k) because

{pw | w ∈ W,p ∈ S(h), ℓ(w) ≤ #W}

contains all elementary tensors of S(h) ⊗ C[W ].
So we just need to show that for pw ∈ Fr and p′w′ ∈ Fs we have pwp′w′ ∈ Fr+s. We

do this by induction on r.
“r = 0”: We have pw = p, then for any s, pwp′w′ = pp′w′ ∈ Fs = Fr+s.
“n → n+ 1”: Let i = 1, . . . , n, pw ∈ Fr, and p′w′ ∈ Fs for any s ∈ N0, then

pwrip
′w′ = pw(ri · p′)riw

′ − kipw
p′ − ri(p′)

α∨
i

w′.

Since ℓ(riw
′) ≤ ℓ(ri) + ℓ(w′) = s+ 1, we can write those two terms as the products of

pw, (ri · p′)riw
′ and − kipw,

p′ − ri(p′)
α∨

i

w′

respectively. In both cases, the first term lies in Fr (the second has degrees ≤ s+ 1 and
≤ s, respectively), so we can apply the induction hypothesis.
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Corollary 6.5.5. Let gr(F•) be the graded algebra associated to the filtration (Fi)i∈N0

of H(R+, k). For w ∈ W,p ∈ S(h) we have

wp = w(p)w

in gr(F•).

Proof. By induction in ℓ(w).
“ℓ(w) = 0”: We have 1p = p1.
“ℓ(w) → ℓ(w) + 1”: Let i = 1, . . . , n such that ℓ(wri) = ℓ(w) + 1 =: r+ 1. Then we have

wrip+ Fr = w

(
ri(p)ri − ki

p− ri(p)
α∨

i

)
+ Fr

= wri(p)ri − kiw
p− ri(p)
α∨

i

+ Fr

= wri(p)ri + Fr

= w(ri(p))wri + Fr

by the induction hypothesis.

Lemma 6.5.6. Let ri1 · · · rir = w be a reduced expression, then

Ii1 · · · Iir + Fr−1 =

 ∏
α∈R0,−∩w(R0,+)

α∨

w + Fr−1.

Proof. By induction in r.
“r = 0”: the identity maps no roots from R0,+ to R0,−, hence we have 1 on both sides.
“r → r+1”: Let ℓ(riw) = ℓ(w)+1, then by induction hypothesis and using Corollary 6.5.5
we have

IiIi1 · · · Iir + Fr = (−α∨
i ri − ki)

 ∏
α∈R0,−∩w(R0,+)

α∨

w + Fr

= (−α∨
i )ri

 ∏
α∈R0,−∩w(R0,+)

α∨

w + Fr

= (−α∨
i )

 ∏
α∈R0,−∩w(R0,+)

ri(α)∨

riw + Fr

= (−α∨
i )

 ∏
α∈ri(R0,−∩w(R0,+))

α∨

riw + Fr.

Since ri is bijective, we have ri(R0,−∩w(R0,+)) = ri(R0,−)∩ri(w(R0,+)). By Lemma 6.1.7,
we have ri(R0,−) = R0,− \ {−αi} ∪ {αi}. Furthermore, since ℓ(riw) > ℓ(w), we have
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αi ∈ w(R0,+) and hence −αi ∈ ri(w(R0,+)). This shows that

ri(R0,− ∩ w(R0,+)) =
(
R0,− \ {−αi} ∪ {αi}

)
∩ ri(w(R0,+))

= R0,− ∩ ri(w(R0,+)) \ {−αi} ,

and hence that

IiIi1 · · · Iir + Fr =

 ∏
α∈R0,−∩ri(w(R0,+))

α∨

riw + Fr.

Theorem 6.5.7. The intertwiners have the following properties:

(a) I2
i = k2

i − (α∨
i )2.

(b) For p ∈ S(h) we have Iip = ri(p)Ii.

(c) Let i ̸= j and mij be the order of rirj ∈ W . Then

IiIj · · · = IjIi . . . (mij-many terms),

i.e. I1, . . . , In satisfy the same braid relations as r1, . . . , rn.

Proof. (a)

I2
i = (riα

∨
i + ki)2 = riα

∨
i riα

∨
i + 2riα

∨
i ki + k2

i

= (−α∨
i ri − kiαi(α∨

i ))riα
∨
i + 2riα

∨
i ki + k2

i

= k2
i − (α∨

i )2

because αi(α∨
i ) = 2.

(b) Similarly to the proof of Proposition 6.4.2, we can show this by induction and
reduce the problem to the homogeneous degree 1 case. Let ξ ∈ h, then

Iiξ = (riα
∨
i + ki)ξ = riξα

∨
i + ξki

= (ri(ξ)ri − kiαi(ξ))α∨
i + ξki

= ri(ξ)riα
∨
i + (ξ − αi(ξ)α∨

i )ki

= ri(ξ)(riα
∨
i + ki)

= ri(ξ)Ii.

(c) The statement is equivalent to

Ii1 · · · Iir = Ij1 · · · Ijr

if
ri1 · · · rir = rj1 · · · rjr = w

91



are two equal reduced expressions. Let I, J be the products of intertwiners on the
left and on the right, respectively. From Lemma 6.5.6 we know their leading term
with respect to F•:

I + Fr−1 = J + Fr−1 =

 ∏
α∈R0,−∩w(R0,+)

α∨

w + Fr−1.

Thus, I − J ∈ Fr−1, say

I − J =
∑

ℓ(w′)<ℓ(w)
pw′w′ (pw′ ∈ S(h)).

We are now showing that I −J is contained in all subspaces Fi of the filtration F•
and hence is zero. For i = r − 1, we already know that.
“i → i− 1”: By induction hypothesis we have

I − J + Fi−1 =
∑

ℓ(w′)=i

pw′w′.

Let ξ ∈ h be regular, then by Corollary 6.5.5 we have

(I − J)ξ + Fi−1 =
∑

ℓ(w′)=i

pw′w′ξ + Fi−1 =
∑

ℓ(w′)=i

pw′w′(ξ)w′ + Fi−1.

By assumption this is now also equal to

w(ξ)(I − J) =
∑

ℓ(w′)=i

pw′w(ξ)w′ + Fi−i.

Since the w′ are linearly independent, this shows that pw′w(ξ) = pw′w′(ξ) for every
w′ of length i. Since ξ is regular, we have w(ξ) ̸= w′(ξ), and thus pw′ = 0.

With these properties out of the way, we can make the following definition:

Definition 6.5.8. Let w = ri1 · · · rir ∈ W be a reduced expression. Define

Iw := Ii1 · · · Iir ,

this is the intertwiner for w.

By Theorem 6.5.7(c), this definition is unambiguous. It follows directly that Iww′ =
IwIw′ if ℓ(ww′) = ℓ(w) + ℓ(w′). Otherwise, this is not necessarily true, as we can see for
example from I2

i ̸= 1 (Theorem 6.5.7(a)). Nevertheless, we still have Iwp = w(p)Iw for
all p ∈ S(h), which is what we set out to do.
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6.5.3. Induced Simple Modules

We are now going to construct something similar to the induced representations from
Section 4, only purely algebraic, and put our theory of intertwiners to good use.

Definition 6.5.9. Let λ ∈ h∗, write Cλ for the 1-dimensional S(h)-module with p · 1 =
p(λ). Then define

Iλ := H(R+, k) ⊗S(h) Cλ.

Iλ is evidently a H(R+, k)-module with central character χλ. Furthermore, as C[W ]-
modules we have Iλ

∼= C[W ], so I is in particular #W -dimensional.

Lemma 6.5.10. Let λ be regular and satisfy µ(α∨
i ) ̸= ±ki (µ ∈ Wλ). Then

(a) As an S(h)-module it decomposes as

Iλ =
⊕

µ∈W λ

Iµ
λ ,

(b) Iλ is simple.

(c) Every finite-dimensional simple H(R+, k)-module with central character χλ is iso-
morphic to Iλ.

(d) The map Iµ
λ → IW

λ given by the action of
∑

w∈W w is a linear isomorphism.

Proof. (a) Note that for µ ̸= µ′ ∈ Wλ we can find a vector ξ with µ(ξ) ̸= µ′(ξ). For
every vector v ∈ Iµ

λ ∩ Iµ′

λ we therefore have

µ(ξ)v = ξ · v = µ′(ξ)v,

which establishes that v = 0, thus the sum is direct.
To show that the sum is indeed all of Iλ, we proceed by a dimension argument.
Since 1 ∈ Iλ

λ , we have dim(Iλ
λ ) ≥ 1. By Theorem 6.5.7(b), IwIµ

λ ⊆ Iw(µ)
λ for

any w ∈ W,µ ∈ Wλ, so the intertwiners are S(h)-morphisms between the weight
spaces of Iλ.
Note that on Iµ

λ we have I2
i = k2

i − µ(α∨
i )2, which is nonzero (hence invertible)

by assumption. As a consequence, all Ii (i = 1, . . . , n) and all Iw (w ∈ W ) are
bijections, hence isomorphisms of S(h)-modules. As a consequence, all weight
spaces Iµ

λ are in bijection to Iλ
λ , hence all have dimension ≥ 1. Therefore, the

direct sum of all weight spaces has dimension ≥ #W , so it equals all of Iλ.

(b) Let M ≤ Iλ be a nontrivial submodule, then the action of S(h) on M gives rise to
a generalised weight space decomposition, with at least one weight vector v of some
weight µ. Since I has central character χλ, we have χµ = χλ on S(h)W , which by
Proposition 6.5.2(b) implies that µ ∈ Wλ. Thus, by the intertwiner action we get
0 ̸= Iwv ∈ Mw(µ), so dim(M) ≥ #W = dim(Iλ). Therefore, M = Iλ.
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(c) Let M be a simple H(R+, k)-module with central character χλ and dimension
≤ #W . The action of S(⟨) induces a generalised weight space decomposition

⊕
µ

∞∑
i=1

Mλ,n

where
Mλ,n = {v ∈ M | ∀p ∈ S(h) : (p− p(λ))n · v = 0} .

In particular, there is at least one weight vector v for some weight µ. By a similar
argument as for the simplicity proof, µ ∈ Wλ, and we can define a H(R+, k)-linear
map ϕ : Iλ → M by having ϕ(1) = Iwv where w(µ) = λ. This is well-defined
because

pϕ(1) = pIwv = Iww
−1(p)v = Iww

−1(p)(µ)v
= w−1(p)(w−1(λ))Iwv = p(λ)ϕ(1) = ϕ(p · 1).

By Schur’s Lemma 2.3.6(a), this is now an isomorphism.

(d) Let 0 ̸= v ∈ Iµ
λ . Since Iλ is simple, H(R+, k)v = Iλ. Since S(h) acts by means of

µ, this really means that C[W ]v = Iλ. If ∑w∈W w · v = 0, this shows that the w · v
(w ∈ W ) are linearly dependent, so that C[W ]v has dimension < #W = dim(Iλ),
which is a contradiction. Thus, the symmetrisation map is injective. Since C[W ] ∼=
Iλ C[W ]-modules, we have dim(IW

λ ) = 1, hence the symmetrisation map is also
surjective.

Lemma 6.5.11. Let M be any H(R+, k)-module with central character χλ, where we
have µ(α∨

i ) ̸= 0,±ki for i = 1, . . . , n and all µ ∈ Wλ. The map

Mλ → MW : v 7→
∑

w∈W

w · v,

i.e. action by
∑

w∈W w, is then a C-linear isomorphism and there is an index set I such
that

M ∼= I(I)
λ .

Proof. By [Che55], there are #W -many elements 1 = h1, . . . , h#W of S(h) that generate
S(h) as a S(h)W -module. If q ∈ MW , this therefore implies that H(R+, k)q is ≤ #W -
dimensional because the action of a general element of H(R+, k) on q looks like

#W∑
i=1

∑
w∈W

si,whiwq =
#W∑
i=1

∑
w∈W

si,whiq =
#W∑
i=1

∑
w∈W

si,w(λ)hiq,

so that h1q, . . . , h#W q is a C-generating system of that submodule. By an argument sim-
ilar to Lemma 6.5.10(b), this shows that H(R+, k)q is simple, and therefore isomorphic
to Iλ.
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If (qi)i∈I is a basis of MW , we then have

M ⊇
⊕
i∈I

H(R+, k)qi
∼= I(I)

λ .

To see that this is indeed everything, let v ∈ M and consider the cyclic moduleH(R+, k)v.
If J ⊆ H(R+, k) is the annihilator of v (left ideal), then H(R+, k)v ∼= H(R+, k)/J . Since
M has central character χλ, we know that the ideal

Jλ := ⟨p− p(λ)|p ∈ S(h)W ⟩

is contained in J . In particular, H(R+, k)v is a quotient of H(R+, k)/Jλ. A basis for
H(R+, k)/Jλ can be given by hi ⊗ w (i = 1, . . . ,#W,w ∈ W ), so that H(R+, k)/Jλ

is (#W )2-dimensional and has #W -many invariant vectors. By a similar argument to
before, we can find a direct sum of simple H(R+, k)-modules inside H(R+, k)/Jλ, but
now, by a dimension argument we can actually establish equality: H(R+, k)/Jλ

∼= I#W
λ .

Thus, H(R+, k)v is a cyclic quotient module of a semisimple module, hence simple. This
means that H(R+, k)v is generated by a W -invariant element, hence it is a submodule
of ⊕

i∈I

H(R+, k)qi.

This shows that M is semisimple and isotypic. By Lemma 6.5.10(d), the symmetrisation
map is a linear isomorphism.

Corollary 6.5.12. Let M be a H(R+, k)-module with central character χλ (for µ(α∨
i ) ̸=

0,±ki for all µ ∈ Wλ), then dim(M) = #W dim(MW ) (both sides potentially infinite).

Proof. By the proof of Lemma 6.5.11, M ∼= I(I)
λ for #I = dim(MW ). Thus, we have

dim(M) = dim(I(I)
λ ) = #I dim(Iλ) = dim(MW )#W.

6.5.4. Hypergeometric Function

Let’s now apply this abstract representation theory of H(R+, k) to some actual concrete
examples of H(R+, k)-modules. To begin with, we can use some of the machinery already
developed in the proof of Theorem 6.3.3 and milk it a bit:

Theorem 6.5.13 (Polynomials). Recall that H(R+, k) acts on C[H]. Then

C[H] =
⊕

λ∈ρ(k)+P +

C[H][χλ],

where C[H][χλ] ∼= C[W/Stab(λ)] as C[W ]-modules.

Sketch of Proof. See [Opd00, propositions 5.4, 5.5]. We use the orthonormal basis from
the proof of Theorem 6.3.3 and analytically continue them for arbitrary multiplicity
vectors k. They simultaneously diagonalise all Dunkl operators. In particular the poly-
nomial with leading term related to µ ∈ Wλ (λ ≥ 0) has a weight in W (λ + ρ). Thus
every basis element lies in a χλ-isotypic component for λ ∈ ρ(k) + P+.
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In particular, for every λ ∈ P+ there is exactly one W -invariant polynomial in
C[H][χρ(k)+λ] with leading coefficient (in front of e(λ)) 1. This polynomial is called
the Jacobi polynomial P (λ, k).

As is somewhat to be expected, these polynomials only cover a discrete range of
parameters. For the more general picture, we have to consider holomorphic functions on
all possible domains. For that note that

Proposition 6.5.14. The sheaf Hreg ⊇ U 7→ O(U) of holomorphic functions on the
site of W -invariant opens U ⊆ Hreg is a sheaf of DRR-modules.

Proof. Note that the W -invariant opens of Hreg form a site that is isomorphic to the
little Zariski site (site of open subsets) of Hreg/W , and that U 7→ O(U) is a sheaf (of
C-algebras) on that site because holomorphicity is a purely local condition, so we can
glue holomorphic functions that agree on overlaps.

Let U ′ ⊆ U be W -invariant open subsets of Hreg, let f ∈ O(U), then

∂p(f |U ′) = (∂pf)|U ′

1
1 − e(−α)f |U ′ = f

1 − e(−α)

∣∣∣∣
U ′

ri(f |U ′) = ri(f)|U ′ ,

so that the restriction map O(U) → O(U ′) is a morphism of DRR-modules.

Corollary 6.5.15. O is a sheaf of H(R+, k)-modules for every multiplicity vector k.

Definition 6.5.16. For U ⊆ Hreg W -invariant define

S(λ, k)(U) := O(U)[χλ]

(as H(R+, k)-modules) the sheaf of solutions to the hypergeometric system of differential
equations.

Proposition 6.5.17. S(λ, k) is also a sheaf of H(R+, k)-modules.

Proof. S(λ, k) is a presheaf because it is the composition of the presheaf O, the restriction
functor from the category of DRR-modules to the category of H(R+, k)-modules, and
the isotypic component functor (cf. Proposition 2.3.11).

Note that S(λ, k) is a presheaf of subspaces of O, with the restrictions coming from
O. Thus, the identity property is given, and we just need to show that the gluing of
sections of S(λ, k) again is a section of S(λ, k). Let (Ui)i∈I be a W -invariant cover of
U ⊆ Hreg, let f ∈ O(U) with f |Ui ∈ S(λ, k)(Ui) for all i ∈ I. Let p ∈ S(h)W , then

(p · f)|Ui = p · f |Ui = p · fi ∈ p(λ)fi = (p(λ)f)|Ui

(because restriction is H(R+, k)-linear), which holds for every i ∈ I. By the identity
axiom, this shows p · f = p(λ)f , hence f ∈ S(λ, k)(U). Thus the gluing axiom is
satisfied.
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Theorem 6.5.18. For any choice of λ, k, the sheaf S(λ, k) is locally constant with the
stalks of S(λ, k)λ having C-dimension #W .

Sketch of Proof. See [HS94, theorem 4.1.8] and [Opd00, section 7.2].
The idea is that the equations p · f = p(λ)f for p ∈ S(h) are equivalent to (Tξ(k) −

λ(ξ)) · f = 0 for ξ ∈ h. By identitfying section of O with sections of a #W -dimensional
vector bundle over Hreg/W , we can build a connection out of Tξ(k) − λ(ξ): note that
for f ∈ O(U)W and g ∈ O(U) we have

(Tξ(k) − λ(ξ))(fg) = ∂ξfg + f(Tξ(k) − λ(ξ))g.

This connection is called the Knizhnik–Zamolodchikov (KZ) connection. Since the Tξ(k)
commute with each other, the KZ connection is flat and therefore has flat sections.
Flatness of a section f directly translates to Tξ(k)f = λ(ξ)f for all ξ ∈ h, and therefore
to f ∈ S(λ, k)(U)λ.

Since the vector bundle that O(U) relates to is #W -dimensional, there are #W lin-
early independent elements in S(λ, k)(U)λ for U small enough. Local constancy follows
from the fact that for simply connected neighbourhoods (in Hreg/W ) we can (uniquely)
define flat sections by parallel transport.

Corollary 6.5.19. Let λ ∈ h be such that µ(α∨
i ) ̸= 0,±ki for µ ∈ Wλ, i = 1, . . . , n. Let

p ∈ Hreg, then
Op[χλ] ∼= I#W

λ

is the direct sum of #W copies of the simple H(R+, k)-module Iλ. (Here, Op is the stalk
at p ∈ Hreg.)

Proof. From Lemma 6.5.11 and Theorem 6.5.18.

The notion of a locally constant sheaf of (finite-dimensional) vector spaces is a way
to model the behaviour of multi-valued functions: functions that can be (uniquely)
continued to always growing (simply connected) domains until topology “gets in the
way”. In [Pha05, chapter VIII] we see how the classical examples of complex multi-valued
functions: roots/non-integer powers and the logarithm, and more generally solutions to
complex ODEs with regular singular points can be described using locally constant
sheaves.

Furthermore, as used in the proof of Theorem 6.5.18, flat sections of a vector bundle
with flat connection also form a locally constant sheaf because we can use the parallel
transport to continue flat sections to larger and larger simply connected domains (and
flatness ensures that the parallel transport is independent of the path chosen).

A locally constant sheaf of finite-dimensional vector spaces over a manifold is also
known as a local system and there are multiple equivalent ways of describing them:

• locally constant sheaf

• vector bundle with flat connection

• representation (of constant dimension) of the fundamental groupoid
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• representation of the fundamental group (if the manifold is connected).

These last two representations are referred to as monodromy and one property of local
systems is that a germ s ∈ Fp can be extended to a section over a connected neighbour-
hood U ∋ p (not necessarily simply connected) iff s is invariant under the monodromy
representation of π1(U, p).

To find out if our local solutions to the hypergeometric system can be extended to
interesting domains, we describe the monodromy representation. It turns out, it can be
phrased in terms of representations of yet another Hecke algebra:

Definition 6.5.20. Let q1, . . . , qn be complex numbers, define the finite-dimensional
Hecke algebra Hfin(R+, q) to be the C-algebra generated by T1, . . . , Tn subject to

TiTj · · · = TjTi · · · (mij factors, i ̸= j)

and (Ti − 1)(Ti + qi) = 0. Here mij = αi(α∨
j )αj(α∨

i ), so that the Ti satisfy the same
braid relations as the ri, but don’t square to 1 – just like the intertwiners.

Define furthermore the affine Hecke algebra Haff (R+, q) to be the tensor product
Hfin(R+, q) ⊗ C[ZR∨] (monomials from v ∈ ZR∨ written as θv), subject to

Tiθv = θri(v)Ti + (qi − 1)
θv − θri(v)
1 − θ−α∨

i

.

Theorem 6.5.21. Assume that λ(α∨) ̸∈ Z for all α ∈ R. Then the monodromy action
on stalks of S(λ, k) induces a representation of Haff (R+, q) where

qj = exp
(
−2πi

(
k 1

2 αi
+ kαi

))
.

(Evidently, this action commutes with the action of H(R+, k).)
In particular, as Haff (R+, q)-modules, we have

S(λ, k)p
∼= Haff (R+, q) ⊗C[ZR∨] Cexp(2πiλ)

where Cexp(2πiλ) is the 1-dimensional C[ZR∨] module with v · 1 = exp(2πiλ(v)).

Proof. See [Opd00, theorem 6.8 and the following remarks] and [HS94, corollary 4.3.8].
That the monodromy action commutes with the action of H(R+, k) follows from the

fact that S(λ, k) is a locally constant sheaf of H(R+, k)-modules, so parallel transport
is also H(R+, k)-linear.

Here, the Ti correspond to a path that connects p and ri(p) in Hreg, and the θv corre-
spond to paths of the shape t 7→ p exp(2πtv) (up to a numerical factor of exp(2πiρ(k)(v))).
In other words: Hfin(R+, q) corresponds to the monodromy originating from the cov-
ering Hreg → Hreg/W , and C[ZR∨] corresponds to monodromy originating from the
covering hreg → Hreg, i.e. to the compact part of the torus H.

The theorem shows that unless λ ∈ ρ(k)+P+ (in which case we have already found the
solutions: Jacobi polynomials), we can’t even hope to find something that is invariant
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under all the monodromy. However, if we somewhat reduce our ambitions and don’t try
to extend our local solutions to Hreg, but only to a tubular neighbourhood U of

Areg = {ϕ ∈ Hreg | im(ϕ) ⊆ R>0} ,

we don’t have to find invariants under the whole fundamental group, but just invariants
under the fundamental group of U (equivalently: of Areg). It just so happens that the
monodromy representation of Areg corresponds to a representation of Hfin(R+, q). In
other words: we “cut open” the loops around the compact tori and then satisfy only the
invariance requirement along the remaining loops.

As it turns out, this approach is successful and we have:

Theorem 6.5.22. Let U ⊆ Hreg be a tubular neighbourhood of

Areg = {ϕ ∈ Hreg | im(ϕ) ⊆ R>0} ,

then there exists up to scaling a unique section F (λ, k) ∈ S(λ, k)(U)W .

Proof. See [Opd00, theorem 6.13].

Corollary 6.5.23. Let U ⊆ Hreg be a tubular neighbourhood of Areg (or any other
maximally noncompact real form), and let λ ∈ h be such that µ(α∨

i ) ̸= 0,±ki (µ ∈
Wλ, i = 1, . . . , n), then

O(U)[χλ] ∼= Iλ.

Proof. Follows from Lemma 6.5.11 and Theorem 6.5.22.

Definition 6.5.24. In case this unique function is nonzero at 1, we can without loss of
generality choose it to satisfy F (λ, k; 1) = 1. This (now truly unique) function is called
(symmetric) Heckman–Opdam hypergeometric function.

Now, instead of focussing on C[W ] ⊆ H(R+, k)-invariant, Hfin(R+, q)-invariant sec-
tions of S(λ, k), we could also focus on weight vectors:

Corollary 6.5.25. Let U ⊆ Hreg be a tubular neighbourhood of Areg. If either µ(α∨
i ) ̸=

0,±ki (µ ∈ Wλ, i = 1, . . . , n) or Re(kα) ≥ 0 for one α ∈ R+, then there exists up to
scaling a unique section G(λ, k) ∈ S(λ, k)(U)λ.

Proof. For λ generic, this follows from Corollary 6.5.23 and the fact that the weight
spaces of the Iλ have dimension 1 for λ generic.

For λ is not generic, but we have Re(kα) ≥ 0, it is possible to show that the singularities
are removable ([Opd00, lemma 7.7]).

Definition 6.5.26. In case this unique function is nonzero at 1, we can without loss of
generality choose it to satisfy G(λ, k; 1) = 1. This function is called the non-symmetric
Heckman–Opdam hypergeometric function.
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6.6. Hypergeometric System
In the last section we have seen what the χλ-isotypic components S(λ, k)(U),S(λ, k)p

of the H(R+, k)-modules O(U),Op look like, and thereby proved results about the hy-
pergeometric system of differential equations. This leaves one major question about
this whole subject unanswered: what is this system when expressed in coordinates, and
what does it have to do with the differential operator from 5.1.4? Let’s now answer that.
Along the way we’ll also see why the system is called hypergeometric.
Definition 6.6.1. Let ξ1, . . . ξn ∈ h be an orthonormal basis, let (π, V ) be a representa-
tion of W . Let k be a multiplicity vector. Then define

MLπ(k) := βπ(Tξi
(k)2) ∈ DR.

In particular, if V is 1-dimensional and f ∈ O(U) transforms like an element of V , then
MLπ(k)f = ∑n

i=1 ξ
2
i · f .

For (π, V ) being the trivial representation, we just write ML(k). This is called the
quadratic hypergeometric differential operator.
Proposition 6.6.2. We have

ML(k) = ∆ +
∑
α≥0

kα
1 + e(−α)
1 − e(−α)∂Xα + ∥ρ(k)∥2

Proof. We have

n∑
i=1

Tξi
(k)2 =

n∑
i=1

∂ξi
+
∑
α≥0

kαα(ξi)∆α − ρ(k)(ξi)

2

=
n∑

i=1
∂2

ξi
+ 1

2

n∑
i=1

∑
α,β≥0

kαkβα(ξi)β(ξi){∆α,∆β} +
n∑

i=1
ρ(k)(ξi)2

+
n∑

i=1

∑
α≥0

kαα(ξi){∂ξi
,∆α}

− 2
n∑

i=1
ρ(k)(ξi)∂ξi

− 2
n∑

i=1

∑
α≥0

kαα(ξi)ρ(k)(ξi)∆α

= ∆ + 1
4
∑
α,β

kαkβ(1 + 2{∆α,∆β} − 2∆α − 2∆β)

+
∑
α≥0

kα{∂Xα ,∆α} − 2∂Xρ(k) .

Note that

{∂Xα ,∆α} = 1
1 − e(−α)∂Xα(1 − rα) + 1

1 − e(−α)∂Xα(1 + rα) − ∥α∥2

(1 − e(−α))2 (1 − rα)

= 2
1 − e(−α)∂Xα − ∥α∥2

1 − e(−α)∆α.
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Thus,
n∑

i=1
Tξi

(k)2 = ∆ +
∑
α≥0

kα
1 + e(−α)
1 − e(−α)∂Xα

+ 1
4
∑

α,β≥0
kαkβ⟨α, β⟩(1 + 2{∆α,∆β} − 2∆α − 2∆β)

−
∑
α≥0

kα
∥α∥2

1 − e(−α)∆α

= ∆ +
∑
α≥0

kα
1 + e(−α)
1 − e(−α)∂Xα + 1

8
∑

α,β≥0
kαkβ{2∆α − 1, 2∆β − 1}

−
∑
α≥0

kα
∥α∥2

1 − e(−α)∆α.

On a symmetric function, ∆α acts like 0, so all terms that have a ∆α on the right vanish
when applying βπ (π the trivial representation). Thus, we are left with

∆ +
∑
α≥0

kα
1 + e(−α)
1 − e(−α)∂Xα + 1

4
∑

α,β≥0
kαkβ⟨α, β⟩

Example 6.6.3 (Type An). Take

h =
{

(χ0, . . . , χn) ∈ Cn+1
∣∣∣ χ0 + · · · + χn = 0

}
with the inner product inherited from Cn+1, and

H =
{

(ρ0, . . . , ρn) ∈ (C×)n+1
∣∣∣ ρ0 · · · ρn = 1

}
.

Then we can choose the positive roots to be e∗
i − e∗

j (i > j), then

(e∗
i − e∗

j )∨ = 2ei − ej

2 = ei − ej

and e(e∗
i − e∗

j )(ρ0, . . . , ρn) = ρi
ρj

.
There is only one Weyl orbit, so the multiplicity vector is just the number k. In

particular,

ρ(k) = k

2
∑
i>j

(ei − ej) = k

2

n∑
i=0

(2i− n)ei,

hence

∥ρ(k)∥2 = k2
n∑

i=0

(
i2 − in+ n2

4

)

= k2
(

(n+ 1)n
2

4 − n
n(n+ 1)

2 + n3

3 + n2

2 + n

6

)

= k2

4
n(n+ 1)(n+ 2)

3 .
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Then,

ML(k) = ∆ + k
∑
i>j

ρi + ρj

ρi − ρj
(ρi∂ρi − ρj∂ρj ) + k2

4
n(n+ 1)(n+ 2)

3 ,

or in terms of logarithmic coordinates χ0, . . . , χn:

∆ + k
∑
i>j

coth
(
χi − χj

2

)
(∂χi − ∂χj ) + k2

4
n(n+ 1)(n+ 2)

3

Example 6.6.4 (Type BCn). Take h = Cn with coordinates χ1, . . . , χn with inner
product inherited from Cn, and H = (C×)n with coordinates ρ1, . . . , ρn. Then we can
choose the positive roots to be

e∗
i , 2e∗

i , e
∗
i − e∗

j , e
∗
i + e∗

j (i > j).

Then there are three Weyl orbits: short, medium, and long roots, labelled with k1, k2, k3,
respectively, and

ML(k) = ∆ +
n∑

i=1

(
k1
ρi + 1
ρi − 1 + 2k3

ρi + ρ−1
i

ρi − ρ−1
i

)
ρi∂ρi

+
∑
i>j

k2

(
ρi + ρj

ρi − ρj
(ρi∂ρi − ρj∂ρj ) + ρiρj + 1

ρiρj − 1(ρi∂ρi + ρj∂ρj )
)

+ ∥ρ(k)∥2

= ∆ +
n∑

i=1

2k1 + (k1 + 2k3)(ρi + ρ−1
i )

ρi − ρ−1
i

ρi∂ρi + 2k2
∑
i>j

ρi − ρ−1
i

ρi + ρ−1
i − ρj − ρ−1

j

ρi∂i

− 2k2
∑
i>j

ρj − ρ−1
j

ρi + ρ−1
i − ρj − ρ−1

j

ρj∂ρj + ∥ρ(k)∥2

in ρi coordinates and

ML(k) = ∆ +
n∑

i=1
(k1 csch(χi) + (k1 + 2k3) coth(χi))∂χi

+ 2k2
∑
i>j

sinh(χi)∂χi − sinh(χj)∂χj

cosh(χi) − cosh(χj) + ∥ρ(k)∥2

= ∆ +
n∑

i=1

(
k1 coth

(
χi

2

)
+ 2k3 coth(χi)

)
∂χi

+ k2
∑
i>j

(
coth

(
χi − χj

2

)
(∂χi − ∂χj ) + coth

(
χi + χj

2

)
(∂χi + ∂χj )

)
+ ∥ρ(k)∥2
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Lemma 6.6.5. In the general setting define

δ(k) :=
∏

α∈R+

(
e

(
α

2

)
− e

(
−α

2

))kα

.

Then δ(k)ML(k)δ(k)−1 = ∆ + V where

V =
∑

α∈R+

kα(1 − kα − 2k2α)∥α∥2(
e
(

α
2
)

− e
(
−α

2
))2 .

Proof. First note that for an entire function h ∈ O(Hreg) that’s nonzero everywhere and
a differential operator D, the operator hαDhβ is always a (globally defined) differential
operator if α + β ∈ Z, regardless of which domain we define our logarithm and hence
our power functions in. This follows from induction in the degree of D:
“degree 0”: hαfhβ = fhα+β.
“d → d+ 1”: Let ξ ∈ h, then

hαDξhβ = hαDh−αhαξhβ

= hαDh−αhα+βξ + hαDh−αhα+β−1∂ξ(h).

By induction hypothesis, hαDh−α is a (globally defined) differential operator. Further-
more, so are hα+βξ and hα+β−1∂ξ(h).

The calculation itself can be found at [HS94, theorem 2.1.1] (and the expression is
also valid for our Dunkl operators as per [Opd00, example 6.2]). Note that the authors
of this book call δ1/2 what we call δ.

As a consequence, a function f ∈ O(U) satisfies ML(k)f = ∥λ∥2f iff

∥λ∥2δ(k)f = δ(k)ML(k)δ(k)−1δ(k)f = (∆ + V )δ(k)f,

which is (up to constants) the time-independent Schrödinger equation for the Calogero–
Sutherland model (for the root system R) from the introduction. As was already hinted
there, for An and BCn we get potentials with particularly nice interpretations:

Example 6.6.6 (Type An). Here we have

V = 2k(1 − k)
∑
i>j

1
ρiρ

−1
j + ρ−1

i ρj − 2

= k(1 − k)
2

∑
i>j

csch2
(
χi − χj

2

)
,

i.e. a potential of n+ 1 1-dimensional particles interacting via a csch2 potential.
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Example 6.6.7 (Type BCn). Here we have

V =
n∑

i=1

(
k1(1 − k1 − 2k3)
ρi + ρ−1

i − 2
+ 4k3(1 − k3)
ρ2

i + ρ−2
i − 2

)

+
∑
i>j

2k2(1 − k2)
(

1
ρiρ

−1
j + ρ−1

i ρj − 2
+ 1
ρiρj + ρ−1

i ρ−1
j − 2

)

=
n∑

i=1

(
k1
2

(1 − k1
2 − k3

)
csch2

(
χi

2

)
+ k3(1 − k3) csch2(χi)

)
+
∑
i>j

k2
2 (1 − k2)

(
csch2

(
χi − χj

2

)
+ csch2

(
χi + χj

2

))
,

the potential of n 1-dimensional particles, each of which in a Pöschl–Teller potential,
interacting with each other and with their reflections via csch2.

6.7. Connection to Scalar Conformal Blocks
The attentive reader may have noticed that the operator ML(k) for BCn (as given in
Example 6.6.4) look oddly familiar. Especially, if we choose n = 2, we obtain

∂2
χ1 + ∂2

χ2 +
2∑

i=1

(
k1 coth

(
χi

2

)
+ 2k3 coth(χi)

)
∂χi

+k2

(
coth

(
χ1 − χ2

2

)
(∂χ1 − ∂χ2) + coth

(
χ1 + χ2

2

)
(∂χ1 + ∂χ2)

)
+
(
k1
2 + k3

)2
+
(
k1
2 + k2 + k3

)2
.

Written this way, it has a lot of similarity with the expression (5.2) we got for the Casimir
equation for scalar conformal blocks, expanded in (χ1, χ2)-coordinates. In particular this
Casimir differential operator is

ML(k) − 1
4 −

(
k2 + 1

2

)2

for k being related to the dimension d and the parameters ∆1,∆2 of the representation
V as follows:

k =
(

∆1,
d− 2

2 ,
1 − ∆1 − ∆2

2

)
.

In particular, a conformal block f is said to have parameters ∆, ℓ if it satisfies

Ωg · f = 1
2(∆(∆ − d) + ℓ(ℓ+ d− 2))f.
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Such an f then satisfies

2ML(k)f = ∆(∆ − d)f + ℓ(ℓ+ d− 2)f + f

2 + 2
(
k2 + 1

2

)2
f

= ∆(∆ − 2k2 − 2)f + ℓ(ℓ+ 2k2)f + 2k2
2f + 2k2f + f

=
(
∆2 + k2

2 + 1 − 2∆k2 − 2∆ + 2k2
)
f +

(
ℓ2 + 2k2ℓ+ k2

2

)
f

=
(
(∆ + k2 + 1)2 + (ℓ+ k2)2

)
f

ML(k)f =
∥∥∥∥∥ 1√

2

(
∆ + k2 + 1
ℓ+ k2

)∥∥∥∥∥
2

f.

To conclude this section, let us find out why the hypergeometric system of differential
equations is called hypergeometric. For this, let us consider the BC1 case. In BC1 there
are two Weyl orbits: short and long, labelled with k1, k2, respectively. We have

ML(k) = (ρ∂ρ)2 +
(
k1
ρ+ 1
ρ− 1 + 2k2

ρ+ ρ−1

ρ− ρ−1

)
ρ∂ρ +

(
k1
2 + k2

)2

= ∂2
χ +

(
k1 coth

(
χ

2

)
+ 2k2 coth(χ)

)
∂χ +

(
k1
2 + k2

)2
.

Now we go to the z-coordinate from Section 5.3, i.e. z = 1
2 − 1

4(ρ+ ρ−1) = − sinh2(χ
2
)
.

We obtain

ML(k) = −z(1 − z)∂2
z −

(
k1 + k2 + 1

2 − (k1 + 2k2 + 1)z
)
∂z +

(
k1 + 2k2

2

)2
.

The equation ML(k)f = λ2f becomes

0 = −
(
z(1 − z)∂2

z +
(
k1 + k2 + 1

2 − (k1 + 2k2 + 1)z
)
∂z −

(
k1 + 2k2

2

)2
+ λ2

)
f

= −
(
z(1 − z)∂2

z + (c− (a+ b+ 1)z)∂z − ab
)
f,

where we defined
c := k1 + k2 + 1

2 , a, b = k1 + 2k2
2 ± λ.

This is precisely the hypergeometric ODE, and since the correspondence k1, k2, λ ↔ a, b, c
is bijective, the quadratic hypergeometric equation from the theory of Dunkl operators
for BC1 serves exactly the same purpose as the hypergeometric ODE.

6.8. Connection to Spinorial Conformal Blocks
Let us now introduce the second method to deal with the fact that in H(R+, k) we
generally have wpw−1 ̸= w(p) for w ∈ W,p ∈ S(h). In Section 6.5.2, we introduced
intertwiners to find replacements for the w’s that interact nicely with the Dunkl opera-
tors. We could, however, go the other way around and use the Dunkl operators defined
in [HS94].
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6.8.1. Heckman–Dunkl Operators

Let ξ ∈ h, then define

Sξ(k) = Tξ(k) + 1
2
∑

α∈R+

kαα(ξ)rα = ∂ξ + 1
2
∑

α∈R+

kαα(ξ)1 + e(−α)
1 − e(−α)(1 − rα), (6.2)

or in terms of the Hecke algebra: sξ(k) := ξ + uξ(k) where

uξ(k) = 1
2
∑

α∈R+

kαα(ξ)rα.

From (6.2) we can see that replacing α by −α in the sum doesn’t change the sum, so
that Sξ(k) is independent from the choice of positive roots, which shows that wSξ(k)w−1 =
Sw(ξ)(k). On the flip side, the Sξ now have nontrivial commutators, so by switching from
one flavour of Dunkl operator to the other, we have sacrificed commutativity for a nice
W -action.

6.8.2. A Closer Look at BC2

In order to find a connection to the expressions for the Dirac operator (or in particular,
the differential operators it can be written in terms of) we now have a more in-depth look
at BC2, in particular at its Weyl group. Recall that BC2 is made up of the following
roots:

e∗
1, 2e∗

1, e
∗
2, 2e∗

2, e
∗
1 + e∗

2, e
∗
1 − e∗

2

and their negatives. We can choose the above roots to be the positive roots, in which
case the simple roots are given by α := e∗

1 and β := e∗
2−e1. The corresponding reflections

rα, rβ then generate the Weyl group.
W has five conjugacy classes of elements:

{1} , {rα, rβrαrβ} , {rβ, rαrβrα} , {rαrβ, rβrα} , {rαrβrαrβ}

(the identity, reflections along the axes, reflections along the diagonals, rotations by
π
2 , and rotation by π). By classical finite group representation theory, these conju-
gacy classes correspond to five irreducible representations. Since #W = 8, exactly
one of these representations has to be > 1-dimensional, namely 2-dimensional. The 1-
dimensional representations correspond to the (multiplicative) characters χ(s,t) given by
χ(s,t)(rα) = s and χ(s,t)(rβ) = t for s, t ∈ {±1}, and the 2-dimensional representation is
the representation of W on h, which has character

χ2(1) = 2, χ2(rα) = χ2(rβ) = χ2(rαrβ) = 0, χ2(rαrβrαrβ) = −2.

106



6.8.3. Matching Differential Operators

In the 1d representation (s, t) we obtain the following S-Dunkl operators (write Si for
Sei(k)):

β(s,t)(S1) = ∂χ1 + 1
2

((
k1 coth

(
χ1
2

)
+ 2k3 coth(χ1)

)
(1 − s)

+ k2

(
coth

(
χ1 + χ2

2

)
+ coth

(
χ1 − χ2

2

))
(1 − t)

)

β(s,t)(S2) = ∂χ2 + 1
2

((
k1 coth

(
χ2
2

)
+ 2k3 coth(χ2)

)
(1 − s)

+ k2

(
coth

(
χ1 + χ2

2

)
− coth

(
χ1 − χ2

2

))
(1 − t)

)
.

We will now look at C[Hreg]-linear combinations of these operators and try to find
the differential operators obtained in Section 5.3.3 (in χ-coordinates). We have

coth
(
χ1
2

)
β(s,t)(S1) ± coth

(
χ2
2

)
β(s,t)(S2)

= coth
(
χ1
2

)
∂χ1 ± coth

(
χ2
2

)
∂χ2

+ 1
2

(
(k1 + k3) coth2

(
χ1
2

)
± (k1 + k3) coth2

(
χ2
2

)
+ (1 ± 1)k3

)
(1 − s)

+ k2
2

cosh2(χ1
2
)

∓ cosh2(χ2
2
)

sinh
(

χ1+χ2
2

)
sinh

(
χ1−χ2

2

)(1 − t).

If we set s = 1 and look at the + case, we obtain

coth
(
χ1
2

)
∂χ1 + coth

(
χ2
2

)
∂χ2 + k2(1 − t) = E − 2k3 − k2t,

and for the − case we obtain

coth
(
χ1
2

)
∂χ1 − coth

(
χ2
2

)
∂χ2 + k2(1 − t)

cosh2(χ1
2
)

+ cosh2(χ2
2
)

sinh
(

χ1−χ2
2

)
sinh

(
χ1+χ2

2

) = F−t.

Conversely, we have

tanh
(
χ1
2

)
β(s,t)(S1) ± tanh

(
χ2
2

)
β(s,t)(S2)

= tanh
(
χ1
2

)
∂χ1 ± tanh

(
χ2
2

)
∂χ2

+ 1
2

(
(1 ± 1)(k1 + k3) + k3 tanh2

(
χ1
2

)
± k3 tanh2

(
χ2
2

))
(1 − s)

+ k2(1 − t)
sinh2(χ1

2
)

∓ sinh2(χ2
2
)

sinh
(

χ1−χ2
2

)
sinh

(
χ1+χ2

2

) .
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For s = 1 we obtain for the + case

tanh
(
χ1
2

)
∂χ1 + tanh

(
χ2
2

)
∂χ2 + k2(1 − t) = −G+ 2(k1 + k2 + k3) − k2t

and for the − case

tanh
(
χ1
2

)
∂χ1 − tanh

(
χ2
2

)
∂χ2 + k2(1 − t)

sinh2(χ1
2
)

+ sinh2(χ2
2
)

sinh
(

χ1−χ2
2

)
sinh

(
χ1+χ2

2

) = −H−t

if wµwν = 1. This can be achieved in most practical cases, e.g. by choosing

w = diag(−1, 1 . . . , 1,−1, 1), w = diag(1,−1,−1, 1, . . . , 1,−1,−1)

for q = 0, 1, respectively.
To summarise, we can write the operators E,F,G,H used in (5.1) to express the Dirac

operator as a matrix in terms of Dunkl (-derived differential) operators as

E = coth
(
χ1
2

)
β(+,t)(S1) + coth

(
χ2
2

)
β(+,t)(S2) + 2k3 + k2t

G = − tanh
(
χ1
2

)
β(+,t)(S1) − tanh

(
χ2
2

)
β(+,t)(S2) + 2(k1 + k2 + k3) − k2t

F t = coth
(
χ1
2

)
β(+,−t)(S1) − coth

(
χ2
2

)
β(+,−t)(S2)

Ht = − tanh
(
χ1
2

)
β(+,−t)(S1) + tanh

(
χ2
2

)
β(+,−t)(S2).

6.8.4. Matching Representations

In the previous subsection, we have established a correspondence between the differential
operators occurring in the matrix expression (5.1) and linear combinations of (Heckman–
)Dunkl operators acting on different 1d representations of W . However, especially in the
case of E,G (and t = +), this correspondence is tenuous at best since in this case the
Dunkl operators become just the derivatives themselves, so we could build any differential
operator as a C[Hreg]-linear combination of them. That this correspondence also works
out for E,G in the t = − case is already a hint that this correspondence is not just
spurrious, as is the correspondence for F,H.

However, we are still dealing with occurrences of seemingly random instances of
β(+,+), β(+,−) and it would be nice to get rid of them, maybe by assigning consistent
W -representations to the different basis vectors. In order to achieve that we have a
closer look at how W and in particular its generators rα, rβ act on h, H, and interact
with S1, S2 and their linear combinations.
rα inverts the 1st coordinate, i.e. we have rα(χ1) = −χ1 and rα(χ2) = χ2. Similarly,

rβ inverts the difference between the 1st and 2nd coordinate, hence rβ(χ1) = χ2 and
vice-versa.
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Proposition 6.8.1. For s, t ∈ {±}, the operators

I+
1 := coth

(
χ1
2

)
S1 + coth

(
χ2
2

)
S2, I+

2 := − tanh
(
χ1
2

)
S1 − tanh

(
χ2
2

)
S2

are intertwiners between (s, t) and (s, t), and the operators

I−
1 := coth

(
χ1
2

)
S1 − coth

(
χ2
2

)
S2, I−

2 := − tanh
(
χ1
2

)
S1 + tanh

(
χ2
2

)
S2

are intertwiners between the (s, t) and (s,−t) isotypic components (with respect to W )
of any representation they act on.

Proof. Note that

rαS1 = −S1rα rβS1 = S2rβ

rαS2 = S2rα rβS2 = S1rβ,

so that we obtain

rαI
±
1 =

(
coth

(
−χ1

2

)
(−S1) ± coth

(
χ2
2

)
S2

)
rα

= I±
1 rα

rβI
±
1 =

(
coth

(
χ2
2

)
S2 ± coth

(
χ1
2

)
S1

)
rβ

= ±I±
1 rβ

and similarly rαI
±
2 = I±

2 rα and rβI
±
2 = ±I±

2 rβ. If f lies in the (s, t)-isotypic component,
we have

rαI
±
1/2f = I±

1/2rαf = sI±
1/2f

rβI
±
1/2f = ±I±

1/2rβf = ±tI±
1/2f,

so that I±
1/2f lies in the (s,±t)-isotypic component, as claimed.

Theorem 6.8.2. Let f ∈ Ward(S ⊗ V ) be such that

fστ =
∑

I⊆{µ,ν}
aIvI +

∑
I⊆{µ,ν}

ãIvI

where aI , ãI ∈ O(U)[(+,+)] if ν ̸∈ I and aI , ãI ∈ O(U)[(+,−)] if ν ∈ I. Here µ, ν
are the indices chosen such that ξστ is constructed using Pµ, Pν , and we assume that
wµwν = 1. In the basis used for (5.1), we then obtain the following

(Df)στ = 1√
2

((D ⊕D) + (C+ ⊕ C−))fστ
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where

D =


0 0 I+

1 ϵF I
−
1

0 0 ϵHI
−
2 −I+

2
−I+

2 −ϵF I−
1 0 0

−ϵHI−
2 I+

1 0 0

 ϵF := w0wν√−ηµµηνν
, ϵH := ηµµϵF

and

C± =


0 0 ±k2 + 2k3 0
0 0 0 −2(k1 + k2 + k3) ∓ k2

−2(k1 + k2 + k3) ± k2 0 0 0
0 ∓k2 + 2k3

.
The coordinate functions of (Df)στ have the same W -transformation behaviour as we
required from fστ .

Proof. The basis is chosen in such a way that within the subspaces spanned by the v’s
and the ṽ’s respectively, the isotypes always alternate, starting from (+,+) and (+,−),
respectively. Note that in the matrix D± there is always an F± in even-numbered
columns and an H∓ in odd-numbered columns. Using our assignment of isotypes, those
are then just the respective actions of I−

1 and I−
2 , respectively. If we replace E,G by

I+
1 , I

+
2 and extract the constants, we obtain the expressions from the claim.

Since I+’s always occur in places where row number and column number have the
same parity, and the I−’s always occur in places where these numbers have opposite
parity, by Proposition 6.8.1, D doesn’t change the assigned isotypes.

And with that we have expressed the components of the Dirac operator using Dunkl
operators and C[Hreg], so fundamentally in terms of C[Hreg]⊗RDRR. Since H(R+, k)’s
embedding into DRR has no way of touching “interesting” regular functions, there is
(to the author’s knowledge) no direct way of phrasing this in terms of representations of
H(R+, k). However, [Opd00] enlarges the degenerate affine Hecke algebra to the extended
degenerate double-affine Hecke-algebra (edDAHA) He(R+, k), which as a vector space is
isomorphic to C[H] ⊗ H(R+, k), and which can be defined in very much the same way
as H(R+, k), except using the extended Weyl group (that includes translations along P ,
hence double-affine) and the affine root system generated by R.

Covering the (representation) theory of edDAHAs in this thesis would go too far, but
suffice it to say that they also have representations on C[H],C[Hreg] and O(U) that now
also include the operations of multiplying by elements of C[H]. If we localise He(R+, k)
in the multiplicative set generated by 1 − e(−α) (α ∈ R+), we obtain an algebra big
enough to contain our intertwiners I±

1/2.

6.8.5. Assignment of Isotypes

Finally, let us now show that the transformation behaviour required by Theorem 6.8.2
is satisfied by fστ for f ∈ Ward(S ⊗ V ) and thereby shed some light on the naturality
of such a requirement.
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Lemma 6.8.3. Let f ∈ Ward(S ⊗ V ), let σ, τ ∈ {s, t} and let µ, ν the indices used
in ξστ . Then the coordinate functions of fστ satisfy the isotype conditions required in
Theorem 6.8.2.

Proof. Recall from Section 5.3 that b is proportional to z1, z2. There is nothing partic-
ularly harmful in allowing b to be negative as well, and thereby extending the domain
to also allowing Im(z1) < 0 (if z1 and z2 are complex conjugates) or allowing z1 < z2.
Then the domain of fστ is a W -invariant subset of h = C2 and we can study W ’s action
on it. Note in particular that rα inverts ρ1 but doesn’t affect z1, z2 at all. Consequently,
rαfστ = fστ , which is why (+,+) and (+,−) are the only irreducible representations
occurring in Theorem 6.8.2.

Now to the action of rβ. Recall that it exchanges χ1, χ2, and therefore also all other
coordinates: ρ1, ρ2 and z1, z2, before ultimately leaving u, v unchanged. As noted before,
b is proportional to z1 − z2, so exchanging z1, z2 inverts b. If (a, b) correspond to z1, z2
we then have

rβfστ (z1, z2) = f(exp(Pµ)w exp(aPµ − bPν)).

To bring the argument back to our fundamental domain (with b > 0), let m ∈ M be
such that meµ = eµ and meν = −eν . The same is then also true for cw(m)eν and we
have

rβfστ (z1, z2) = f(cw(m)ξστ (a, b)m−1) = cw(m) · fστ (z1, z2) ·m−1.

Now, m’s action on the right is trivial, and for cw(m)’s action on the left note that
for p ∈ Cℓ(Y ) we have

ϕY (cw(m))p · v∅ = Ad(cw(m))(p)ϕY (c(w)) · v∅ = Ad(cw(m))(p) · v∅

and similarly for ṽ∅ because

ϕY (cw(m)) · ṽ∅ = det(cw(m))ṽ∅ = ṽ∅.

Since the adjoint action of cw(m) on monomials made up of Kµ,Kν , Pµ, Pν will negate
anything that has a Kν or a Pν in it, we have

cw(m) · vI =
{

−vI ν ∈ I

vI ν ̸∈ I
, cw(m) · ṽI =

{
−ṽI ν ∈ I

ṽI ν ̸∈ I

for I ⊆ {µν}. Consequently, if we expand

fστ =
∑

I⊆{µ,ν}
(aIvI + ãI ṽI),

we get
rβfστ =

∑
I⊆{µ,ν}

(−1)#(I∩{ν})(aIvI + ãI ṽI),

which is exactly the transformation behaviour required in Theorem 6.8.2.
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Thus we see the transformation behaviour under W is a tiny remainder of the MA×
MA-biequivariance that we hadn’t (fully) divided out yet. We can therefore expect
that if there is also a correspondence between non-scalar conformal blocks and a kind
of matrix CS model, there would be more instances of that interaction between Weyl
group action and residual biequivariance under discrete subgroups of MA×MA (modulo
stabiliser of the fundamental domain).

112



7. Conclusion and Outlook

And with that we have achieved what we set out to do. We have

• introduced a representation-theoretic framework for talking about n-point func-
tions and conformal blocks (Section 4),

• reproduced the correspondence between the (quadratic) Casimir equation of scalar
conformal blocks and the (quadratic) hypergeometric equation forBC2 (Section 6.7,

• established a general theory for actions of Clifford algebra-valued (invariant) dif-
ferential operators on spinorial conformal blocks (Section 4.3,

• computed the action of Kostant’s cubic Dirac operator on (the simplest kind of)
spinorial conformal blocks (Section 5.2),

• pondered the question why the cubic Dirac operator is the correct operator to
describe (Section 4.4),

• found Dunkl operators lurking in the matrix entries of the Dirac operator (Sec-
tion 6.8.3), and

• found why the Dunkl operator act the way they act (Section 6.8.5).

The original goal for this thesis was to make the correspondence “physically meaningful
operators acting on conformal blocks” ↔ “Dunkl operators” concrete by finding opera-
tors that correspond to the application of single Dunkl operators. However, as noted in
the proof of Lemma 6.8.3, the only W -irreps we have access to when considering confor-
mal blocks are (+,+) and (+,−), so in a sense there will always be some information
lost when applying Dunkl operators to conformal blocks.

One topic that was also considered but ultimately not included in this thesis is the
square of D. In Theorem 4.3.5 we saw, purely algebraically, how D2 is related to the
Casimir elements of g and ∇. In particular, it leaves the MA × MA-isotypes of S ⊗ V
invariant, which for our choice of V gives it a matrix structure as follows:

∗ 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0 0 0
0 0 0 0 ∗ 0 0 0
0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗


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The diagonal elements are of the shape β(+,±)(Se1(k̃)2 + Se2(k̃)2) (like MLπ(k), but
in terms of Heckman–Dunkl operators, which might yield different results when π is
nontrivial). Here, k̃ denotes a multiplicity vector adjusted according to the MA×MA-
isotype (due to the nontrivial action of A on elements of S, the ∆1 is shifted), and the
off-diagonal terms are 1st-order differential operators. Herein might lie the key to finding
eigenfunctions of D (the true spinorial conformal blocks).

Other lines of inquiry as to the nature of the Dirac operator, expressed in terms of
Dunkl operators, that were considered but not included here are

• perform a suitable (χ1, χ2-dependent) basis change to get rid of coth, tanh (e.g. at
the end of Section 6.8.3 and in Proposition 6.8.1),

• find connection d (e.g. the KZ connection) and metric such that D = d + d†,

• shift operators,

• intertwiners (for W and for the affine Weyl group), and

• W -Spinors (a special case of which can be found at [CM09, section 4.5]).

Any of these, if successful, would provide a more intrinsically motivated expression for
the expression on the Dunkl side. And finally, unlike for the Casimir element, where
nontrivial M -representations require a qualitatively different computation than we saw
here and is hard, the step from V = C to higher-dimensional representations is easier for
the Dirac operator, and was in fact already carried out in Section 5.2. As mentioned at
the end of Section 6.8.5, the consideration of more complicated representations of MA×
MA might shed some more light on the correspondence of MA × MA representations
and W -representations or on other “peripheral aspects” that go beyond just matching
up the differential operators.
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8. Popular Summary

Everyone who has ever cooked anything or made tea will be familiar with the following
(very useful) phenomenon: when you heat water to its boiling point, it doesn’t instantly
boil off. Instead you have to keep supplying heat, and then small bubbles (of similar
size!) of steam form. During the whole boiling process, the temperature stays constant
at 100 degrees Celsius1. This extra heat that you have to supply to “force” a transition
between different states of matter (a phase transition), is called latent heat.

There are, however, also phase transitions that have no latent heat. A magnet, for
example, stops being magnetic if you heat it beyond a certain temperature. The states of
“being magnetic” and “not being magnetic” turn out to be states of matter, too, and this
loss of magnetism is a phase transition. But upon becoming non-magnetic, the magnet
doesn’t suddenly release big amounts of energy, and neither does it become non-magnetic
only gradually. No, this is a change that happens without much “transition”, more or less
instantly, and without any latent heat. This is what we call a 2nd-order (or: continuous)
phase transition. Other, more visible (but probably less commonplace) examples of 2nd-
order phase transitions include the transition between liquid and superfluid Helium, and
the critical point of anything that has a liquid and a gas phase. The critical point is
where the transition line between liquid and gas ends, the point beyond which there is
no difference between gas and liquid anymore.

Unlike magnets, these last two examples have the advantage that we can work with
see-through materials. In other words, we can see (and not only measure) what’s going
on. If we let such a phase transition happen slowly enough, we might be lucky and
encounter critical opalescence: right at the phase transition the whole sample fogs up,
becomes opaque (white and non-see-through), and then emerges in the other state of
matter. One explanation of this phenomenon goes as follows: like with the boiling water,
you have bubbles forming, and these bubbles interfere with the light coming through.
However, unlike in boiling water, these bubbles come in all sizes, from micrometres to
centimetres in diameter, because there is no surface tension. And they are also allowed
to intersect and can form inside each other because there is no difference in density
between the states of matter. Because of this chaos, we can’t see individual bubbles, but
just a general white mist, the critical opalescence.

This hints at a more general phenomenon: that right at this transition point, the
system forgets about size or scale. The pattern of bubbles looks roughly the same at
all sizes, and all physics happens equally on all scales. This means that things like
density fluctuations, magnetisation fluctuations, and so on can be described using a
theory called a conformal field theory (CFT). It turns out that CFTs can be described

1at sea level
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using a relatively small set of data (the CFT data) that relates to physical observables
such as critical exponents. Critical exponents characterise how quantities behave at
and near the transition point: if they converge, if they diverge, and how they converge
or diverge. The question, which CFT data really corresponds to a CFT, or physically
speaking: which critical exponents could occur in nature, is a hard problem that involves
solving an equation called the crossing equation. This problem is known as the conformal
bootstrap.

The crossing equation is a functional equation, i.e. an equation whose solutions are
functions that satisfy certain relations for all possible inputs. An example for a functional
equation would be

f(x+ y) = f(x)f(y) x, y ∈ R,

which is solved for example by the exponential function. In order to somewhat tame the
crossing equation, we make an Ansatz: we guess that the solution is of the shape∑

i∈I

aifi,

i.e. a series of some form, for a collection (fi)i∈I of “nice functions”, and a collection
(ai)i∈I of coefficients. If we plug this Ansatz into the crossing equation, we obtain
infinitely many equations for the coefficients, which – with some luck and some smart
ways of looking at it – we could attempt to solve. In order for us to be able to look in
these smart ways, it is important that we know as much as possible about these nice
functions fi. They are called conformal blocks, and by some miracle they seem to be
related to Heckman–Opdam hypergeometric functions. My thesis tries to advance the
study of that miracle.
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A. Miscellaneous Formalia

Let us now address some formal aspects that were mentioned in the text but not ad-
dressed properly, as well as provide some references.

A.1. Wightman Axioms
The Wightman axioms are a way of mathematically formalising what quantum fields
(in Lorentzian QFT) are. Some free theories have been described in this framework but
we are yet to find “nontrivial” interacting theories that can be thus described. 1 One
starting-off point for the Wightman axioms, as well as other axiom systems, is [Sch08,
chapter 8].

Let H be a Hilbert space, write O(H) for the set of densely defined linear operators
on H. For A ∈ O(H) write DA ⊆ H for its domain. Let S(Rd) be the space of Schwartz
functions on Rd, and write P for the covering group of the Poincaré group.

Definition A.1.1. A field operator Ψ ∈ FO(H) is a function S(Rd) → O(H) such that
there is a dense linear subspace D ⊆ H such that

(a) For all f ∈ S(Rd) we have D ⊆ DΨ(f).

(b) The map S(Rd) ∋ f 7→ Ψ(f)|D ∈ End(D) is linear.

(c) For w ∈ H, v ∈ D, the assignment

S(Rd) ∋ f 7→ ⟨w,Φ(f)v⟩ ∈ C

is a tempered distribution.

Let (π, V ) be a finite-dimensional representation of a Lie group or algebra. Write
T FO(H, V ) := V ⊗ FO(H) for the space of tensor field operators, i.e. objects of the
shape viψi for a basis (vi)i∈I of V and field operators ψi.

For ψ ∈ T FO(H, V ), ϕ ∈ T FO(H,W , say

ψ = viψi, ϕ = wiϕi,

write
ψ(f) ⊗ ϕ(g) := vi ⊗ wjψi(f)ϕj(g)

1In fact, mathematically rigorously describing a gapped Yang–Mills theory is one of the Millenium
Prize Problems [Ins]
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or as generalised functions

ψ(x) ⊗ ϕ(y) := vi ⊗ wjψi(x)ϕj(y),

so the tensor product only acts on the “tensor” aspect of tensor field operators.
Similarly, for w ∈ H, u ∈ D,ψ ∈ T FO(H, V ), say viϕi, write ⟨w, ϕv⟩ for the V -

valued tempered distribution

S(Rd) ∋ f 7→ vi⟨w, ϕi(f)u⟩.

For the special case when both v, w are the vacuum state, write ⟨ϕ⟩.

A Wightman quantum field theory is a tuple (H,Ω, U, π, (ψi)i∈I) of a separable (com-
plex) Hilbert space H, an element Ω ∈ H with ∥Ω∥ = 1, a unitary representation U of P
on H, a finite-dimensional representation of Spin(d− 1, 1), and a tuple of field operators
ψi ∈ FO(H) such that the dense subspace D contained in all of their domains, contains
Ω, subject to the following axioms:

Axiom 1 (Covariance). (a) For all g ∈ P we have U(p)D ⊆ D and U(p)Ω = Ω.

(b) For all f ∈ S(Rd) and i ∈ I we have ψi(f)D ⊆ D.

(c) For g = (Λ, a) ∈ P, f ∈ S(Rd) and i ∈ I we have

U(g)ϕi(f)U(g)−1 = π(Λ−1)j
iϕj(g · f)

where (g · f)(x) := f(Λ−1(x− a)).

If (vi)i∈I is a basis of the representation space of π, realising

π(Λ)vi = π(Λ)i
jvj ,

then the Wightman QFT can also be phrased in terms of the tensor field operator (taking
the group to be the covering group of the Lorentz group) ψ := ψiv

i satisfies

U(g)ϕ(f)U(g)−1 = π(g−1)ϕ(g · f).

Axiom 2 (Locality). Let f, g ∈ S(Rd) have space-like separated supports, then we have

[ψi(f), ψj(g)] = 0

on D.

Axiom 3 (Spectrum Condition). Let P0, . . . , Pd−1 ∈ O(H) be the generators of the
translation semigroups induced by U . Their joint spectrum is contained in the forward
lightcone.
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A.2. Asymptotic Expansions
Asymptotic expansions are a tool that generalises Taylor and Laurent series, which
is commonly used to describe functions f defined on 1-dimensional (complex) domains.
They are a way of describing asymptotic behaviour around a point x in terms of functions
of one’s own choice (so-called gauge functions). Unlike Taylor and Laurent series we don’t
expect the asymptotic expansion of f to converge or, if it does converge, to equal f in
any region. What matters is that the partial sums describe the asymptotic behaviour
of f near x better and better. For more details, see [Mal]. We are describing a slightly
generalised and specialised version of this that is able to describe functions in higher
dimensions but uses a fixed choice of gauge functions.

Let U ⊆ Rd and L ∈ Rd a limit point of U .

Definition A.2.1. A continuous function f : U \ L → R is said to have asymptotic
expansion

∥x− L∥−n
∑
α≥0

cα(x− L)α

around L (n ∈ R, α is a multi-index) if for all m ∈ N we have

lim
x→L

∥x− L∥nf −
∑

|α|≤m cα(x− L)α

∥x− L∥m = 0,

i.e. if the difference between f and the m-th partial sum grows slower than ∥x− L∥m−n.

Example A.2.2. Any multi-dimensional Taylor or Laurent expansion is an asymptotic
expansion. In particular, for d = 1, U = R>0, and L = 0, the function exp

(
−t−1) has

asymptotic expansion 0 around 0.

Definition A.2.3. A field operator ϕ has asymptotic expansion

∥x− L∥−n
∑
α≥0

cα(x− L)α

around L if for every w ∈ H and v ∈ D, the distribution ⟨w, ϕv⟩ has a regular domain
of which L is a limit point, such that the regular function representing ⟨w, ϕv⟩ on that
domain has asymptotic expansion

∥x− L∥−n
∑
α≥0

⟨w, cαv⟩(x− L)α.

A.3. Nuclear Spaces
When it comes to taking tensor products of vector spaces, things become sticky as you
move to infinite dimensions. If V,W are Hilbert spaces, we can take their algebraic
tensor product V ⊗W and give it an inner product via

⟨v ⊗ w, v′ ⊗ w′⟩ := ⟨v, v′⟩⟨w,w′⟩
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and then continuing it sesquilinearly. This then makes V ⊗W into a pre-Hilbert space,
which can be completed to form a Hilbert space – again called V ⊗ W . This seems all
well and good, but trouble arises as soon as we try to use “the” universal property of
tensor products: representing bilinear maps. We could, for example, try to represent
the bilinear map ev : V ∗ ×V → C, (λ, v) 7→ λ(v)), which is wonderfully bounded to have
operator norm 1, as element of (V ∗)∗ ⊗ V ∗ = V ⊗ V ∗. If (vi)i∈N is an orthonormal basis
of V , and (λi)i∈N is its dual basis, then

N∑
i=1

vi ⊗ λi

would represent ev on the space spanned by v1, . . . , vN . Consequently, to represent ev
on all of V , we’d have to take the limit N → ∞, but alas! The N -th partial sum already
has norm

√
N , so that series would never converge.

If we now widen our horizon slightly and consider Banach spaces, we can again follow
the path of taking the algebraic tensor product, defining a suitable norm, and then
completing with respect to that norm. In particular, our norm should satisfy:
Definition A.3.1. Let V, V ′ be vector spaces, let N,N ′ be (semi)norms on V, V ′. A
map p : V ⊗W → R (algebraic tensor product) is called cross(semi)norm if p(v ⊗ v′) =
N(v)N ′(v′) for v ∈ V, v′ ∈ V ′.

Example A.3.2. The projective cross(semi)norm of the seminorms N,N ′ is given by

π(x) = inf
{

n∑
i=1

N(vi)N ′(v′
i)
∣∣∣∣∣ x =

n∑
i=1

vi ⊗ v′
i

}
.

The injective cross(semi)norm of the seminorms N,N ′ is given by

ϵ(x) = sup
{
|(λ⊗ µ)(x)|

∣∣ λ ∈ V ∗, µ ∈ V ′∗, N∗(λ) = N ′∗(µ) = 1
}

where N∗ denotes the operator norm defined from N .

For two Banach spaces V,W , the projective and injective norm are generally different,
and hence define different (completed) tensor products: the projective and injective
tensor product. In some sense they can be seen as the “extremal” tensor products.

For Fréchet and other complete locally convex topological vector spaces, we can follow
similar approaches and get a whole wealth of possible topological tensor products. For
more details on various tensor products and their properties, consult [Trè67, part III].
In this setting, however, a class of locally convex Hausdorff topological vector spaces
(LCHTVS) emerges that exceed all our expectations about their well-behavedness:
Definition A.3.3. A LCHTVS V is called nuclear if for all LCHTVS W (equivalently,
for all Banach spaces W ), the (completed) projective and injective tensor products V ⊗W
are the same. More concretely, if the map

V ⊗π W → V ⊗ϵ W

induced from the identity on the algebraic tensor products is an isomorphism of topolog-
ical vector spaces.
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In other words: among nuclear spaces there is really only one sensible notion of tensor
product. It turns out, these spaces satisfy a host of wonderful “heredity” properties like
Proposition A.3.4. Let V be a nuclear space.

(a) The completion of V is nuclear.

(b) Any linear subspace of V is nuclear.

(c) Let W ≤ V be a closed subspace, then V/W is nuclear.

(d) Products of nuclear spaces are nuclear.

(e) Finite tensor products of nuclear spaces are nuclear.
Proof. See [Trè67, proposition 50.1].

But what we’d ultimately like is some interpretation for the tensor products between
these spaces and, more importantly, some information of if they even exist (at least in
the infinite-dimensional setting – all finite-dimensional vector spaces are nuclear)
Proposition A.3.5. Let Ω ⊆ Rn be open. The spaces

C∞(Ω), C∞
c (Ω),D′(Ω),S(Rn),S ′(Rn)

of smooth functions, test functions, distributions, Schwartz functions, and tempered dis-
tributions are nuclear.
Proof. This is the corollary after [Trè67, theorem 51.5].

And we have, as promised,
Proposition A.3.6.

S(Rm) ⊗ S(Rn) ∼= S(Rm+n)
S ′(Rm) ⊗ S ′(Rn) ∼= S ′(Rm+n)
C∞(X) ⊗ C∞(Y ) ∼= C∞(X × Y )

D′(X) ⊗ D′(Y ) ∼= D′(X × Y )
for X ⊆ Rm, Y ⊆ Rn open.
Proof. This is [Trè67, theorem 51.6], as well as its corollary, and the Schwartz Kernel
Theorem [Trè67, theorem 51.7].

These statements all hold for subsets of Euclidean space, but by covering a manifold M
in patches Ui ⊆ Rn and imposing transition maps on the intersections (on the manifold),
we can express C∞(M), C∞

c (M),D′(M) as linear subspaces of∏
i

C∞(Ui),
∏

i

C∞
c (Ui),

∏
i

D′(Ui),

showing that they are nuclear as well. A similar technique then also shows the statements
about the interpretation of ⊗ on manifolds.

Nuclear spaces and the Schwartz Kernel Theorem are discussed in detail in [Trè67,
sections 50& 51].
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B. Some More Calculations

Most matrices in this appendix will be written as (1, d, 1) block matrices.

B.1. Lie Algebra Elements
Recall that we defined Kµ := F 0,µ − F d+1,µ and Pµ := −F 0,µ − F d+1,µ. This means
that

(Kµ)ν
ρ = η0νδµ

ρ − ηµνδ0
ρ − ηd+1,νδµ

ρ + ηµνδd+1
ρ

= δ0,νδµρ − ηµνδ0,ρ + δd+1,νδµρ + ηµνδd+1,ρ,

which corresponds to the matrix  0 eT
µ 0

−ηeµ 0 ηeµ

0 eT
µ 0

.
Similarly, Pµ corresponds to  0 −eT

µ 0
ηeµ 0 ηeµ

0 eT
µ 0

.
The contractions then look as follows:

b ·K = bµK
µ =

 0 bT
• 0

−b• 0 b•

0 bT
• 0


x · P = xµK

µ =

 0 −xT
• 0

x• 0 x•

0 xT
• 0

.
For our algebra a we have

D0 =

0 0 1
0 0 0
1 0 0

.
We have

[Kµ, P ν ] = −
[
F 0,µ − F d+1,µ, F 0,ν + F d+1,ν

]
= 2Fµν + 2ηµνF 0,d+1 = 2Fµν + 2ηµνD0
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B.2. Group Elements
In order to calculate exp(b ·K) and exp(x · P ) we calculate the squares of the contrac-
tions:

(b ·K)2 =

−b2 0 b2

0 0 0
−b2 0 b2


(b ·K)3 = 0

(x ·K)2 =

−x2 0 −x2

0 0 0
x2 0 x2


(x ·K)3 = 0

where b2 = η(b, b) and x2 = η(x, x). This shows that

exp(b ·K) =

1 − b2

2 bT
•

b2

2
−b• 1 b•

− b2

2 bT
• 1 + b2

2

 exp(x · P ) =

1 − x2

2 −xT
• −x2

2
x• 1 x•

x2

2 xT
• 1 + x2

2

.
Furthermore, we have

w exp(b ·K)w =

w0 0 0
0 w 0
0 0 −w0


1 − b2

2 bT
•

b2

2
−b• 1 b•

− b2

2 bT
• 1 + b2

2


w0 0 0

0 w 0
0 0 −w0



=

 1 − b2

2 w0b
T
• w − b2

2
−w0wb

• 1 −w0wb
•

b2

2 −w0wb
T
• 1 + b2

2


= exp(−w0(wb) · P ).

Furthermore, we have

D2
0 =

1 0 0
0 0 0
0 0 1

,
so that

exp(αD0) =

cosh(α) 0 sinh(α)
0 1 0

sinh(α) 0 cosh(α)

.
B.3. Group Action on Conformal Compactification
Let x ∈ Rp,q be non-isotropic. Recall the element w from the proof of Proposition 3.3.4,
note that A = diag(a0, . . . , ad+1), where a0 = ad+1. Again, we also use A to denote the
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d× d submatrix obtained by removing the first and last row and column. Then,

w · ι(x) = q

w
1 − η(x, x)

2x
1 + η(x, x)




= q

 w0(1 − η(x, x))
2wx

−w0(1 + η(x, x))



= q

η(x, x) − 1
−2w0wx
η(x, x) + 1

 = q

1 − 1
η(x,x)

−2w0wx
η(x,x)

1 + 1
η(x,x)


= ι

(
− w0wx

η(x, x)

)
=: I(x)

B.4. NNMA Decomposition
Let b, x ∈ Rp,q as well as α ∈ R and m ∈ SO(p, q), then

exp(x · P ) exp(b ·K)

±1 0 0
0 m 0
0 0 ±1

 exp(αD0)

=

1 − x2

2 −xT
• −x2

2
x• 1 x•

x2

2 xT
• 1 + x2

2


1 − b2

2 bT
•

b2

2
−b• 1 b•

− b2

2 bT
• 1 + b2

2


±1 0 0

0 m 0
0 0 ±1


cosh(α) 0 sinh(α)

0 1 0
sinh(α) 0 cosh(α)



=

1 + bµx
µ + −b2−x2+b2x2

2 −xT
• + (1 − x2)bT

• −bµx
µ + b2−x2−b2x2

2
−b• + (1 − b2)x• 1 + 2x•bT

• b• + (1 + b2)x•

−bµx
µ + −b2+x2−b2x2

2 xT
• + (1 + x2)bT

• 1 + bµx
µ + b2+x2+b2x2

2


± cosh(α) 0 ± sinh(α)

0 m 0
± sinh(α) 0 ± cosh(α)


=

 A BT
• C

D• E F •

G HT
• I


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where

A = ±
(

1 − x2

2 exp(α) + 1 + 2bµx
µ − b2 + b2x2

2 exp(−α)
)

C = ±
(

1 − x2

2 exp(α) − 1 + 2bµx
µ − b2 + b2x2

2 exp(−α)
)

G = ±
(

1 + x2

2 exp(α) − 1 + 2bµx
µ + b2 + b2x2

2 exp(−α)
)

I = ±
(

1 + x2

2 exp(α) + 1 + 2bµx
µ + b2 + b2x2

2 exp(−α)
)

Bµ = mν
µ

(
−xν + (1 − x2)bν

)
Dµ = ±

(
exp(α)xµ − exp(−α)(bµ + b2xµ)

)
Fµ = ±

(
exp(α)xµ + exp(−α)(bµ + b2xµ)

)
Hµ = mν

µ

(
xν + (1 + x2)bν

)
E = m+ 2x•bT

• m.

From here we see that

A+ C +G+ I

2 = ± exp(α)
A+ C −G− I

2 = ∓x2 exp(α)
A− C +G− I

2 = ∓b2 exp(−α)
A− C −G+ I

2 = ±(1 + 2bµx
µ + b2x2) exp(−α)

Dµ + Fµ

2 = ± exp(α)xµ

Dµ − Fµ

2 = ∓ exp(−α)(bµ + b2xµ)

BT
• +HT

•
2 = bT

• m,
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so that

α = log
(∣∣∣∣A+ C +G+ I

2

∣∣∣∣)
xµ = Dµ + Fµ

A+ C +G+ I

bµ = (Fµ −Dµ)(A+ C +G+ I)
4 + (Fµ +Dµ)(A− C +G− I)

4
= A+G

2 Fµ − C + I

2 Dµ

mµ
ν = Eµ

ν − (Dµ + Fµ)(Bν +Hν)
A+ C +G+ I

.

Similarly, for m ∈ SO(p, q), α ∈ R, b ∈ Rp,q we have

w exp(b ·K)

±1 0 0
0 m 0
0 0 ±1

 exp(αD0)

=

w0 0 0
0 w 0
0 0 −w0


1 − b2

2 bT
•

b2

2
−b• 1 b•

− b2

2 bT
• 1 + b2

2


± cosh(α) 0 ± sinh(α)

0 m 0
± sinh(α) 0 ± cosh(α)



=


w0
(
1 − b2

2

)
w0b

T
• w0

b2

2
−wb• w wb•

w0
b2

2 −w0b
• −w0

(
1 + b2

2

)

± cosh(α) 0 ± sinh(α)

0 m 0
± sinh(α) 0 ± cosh(α)



=

±w0
2 exp(α) ± w0

1−b2

2 exp(−α) w0b
T
• m ±w0

2 exp(α) ∓ w0
1−b2

2 exp(−α)
∓ exp(−α)wb• wm ± exp(−α)wb•

∓w0
2 exp(α) ± w0

1+b2

2 exp(−α) −w0b
•m ∓w0

2 exp(α) ∓ w0
1+b2

2 exp(−α)


=

 A BT
• C

D• E F •

G HT
• I

,
where

α = log
(∣∣∣∣A+ C −G− I

2

∣∣∣∣)
bµ = wµ

ν

(Hν − F ν)(A+ C −G− I)
4

mµ
ν = wµ

ρE
ρ
ν .

Proposition B.4.1.

exp(b ·K) exp(x · P ) = exp
(
x′ · P

)
exp

(
b′ ·K

)
m exp(αD0)
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where

α = log
(
1 + 2bµx

µ + b2x2
)

x′µ = xµ + x2bµ

1 + 2bνxν + b2x2

b′µ = (1 + xνbν)bµ + bν(xνbµ − xµbν)

mµ
ν = δµ

ν + 2bµxν − 2(xµ + x2bµ)(bν + b2xν)
1 + 2bρxρ + b2x2

if 0 ̸= 1 + 2bµx
µ + b2x2, and w exp(b′ ·K)m exp(αD0) with

α = log
(∣∣∣x2

∣∣∣)
b′µ = −x2mµ

νb
ν

mµ
ν = wµ

ρ(δρ
ν + 2bρxν)

otherwise.

Proof.

exp(b ·K) exp(x · P ) =

1 − b2

2 bT
•

b2

2
−b• 1 b•

− b2

2 bT
• 1 + b2

2


1 − x2

2 −xT
• −x2

2
x• 1 x•

x2

2 xT
• 1 + x2

2



=

1 + bµx
µ + −b2−x2+b2x2

2 bT
• − (1 − b2)xT

• bµx
µ + b2−x2+b2x2

2
x• − (1 − x2)b• 1 + 2b•xT

• x• + (1 + x2)b•

bµx
µ + −b2+x2+b2x2

2 bT
• + (1 + b2)xT

• 1 + bµx
µ + b2+x2+b2x2

2


=

 A BT
• C

D• E F •

G HT
• I

,
so that

α = log
(∣∣∣∣A+ C +G+ I

2

∣∣∣∣) = log
(
1 + 2bµx

µ + b2x2
)

x′µ = Dµ + Fµ

A+ C +G+ I
= xµ + x2bµ

1 + 2bνxν + b2x2

b′µ = A+G

2 Fµ − C + I

2 Dµ

= (1 + 2bνx
ν + b2x2)bµ − b2(xµ + x2bµ)

= bµ + xνbνb
µ + bν(xνbµ − xµbν)

m = 1 + 2b•xT
• − 2(x• + x2b•)(bT

• + b2xT
• )

1 + 2bµxµ + b2x2

for an NNMA decomposition.
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For the case that b ∈ O(t) and we’re truncating after order t, we have

α = 2bµx
µ

x′µ = xµ

1 + 2bνxν
+ x2bµ = xµ(1 − 2bνx

ν) + x2bµ

b′µ = bµ

mµ
ν = 1 + 2bµxν − 2xµbν .

If we have a wMAN decomposition instead, the parameters are as follows:

α = log
(∣∣∣∣A+ C −G− I

2

∣∣∣∣) = log
(∣∣∣x2

∣∣∣)
b′µ = wµ

ν

(Hν − F ν)(A+ C −G− I)
4 = −x2wµ

νb
ν

mµ
ν = wµ

ρ(δρ
ν + 2bρxµ).

Proposition B.4.2.

w exp(x · P ) = exp
(
x′ · P

)
exp

(
b′ ·K

)
m exp(αD0)

where x′ = I(x).

Proof.

w exp(x · P ) = w

1 − x2

2 −xT
• −x2

2
x• 1 x•

x2

2 xT
• 1 + x2

2



=


w0
(
1 − x2

2

)
−w0x

T
• −w0

x2

2
wx• w wx•

−w0
x2

2 −w0x
T
• −w0

(
1 + x2

2

)
,

so that

α = log
(∥∥∥x2

∥∥∥)
x′µ = −w0w

µ
νx

ν

x2

b′µ = w0w
µ

νx
ν

mµ
ν = wµ

ρ

(
δρ

ν − 2xρxν

x2

)
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B.5. MANwNMA Decomposition
Let x, y ∈ Rp,q, α, β ∈ R,m,m′ ∈ SO(p, q), then let’s calculate

m exp(αD0) exp(x · P )w exp(y · P )m′ exp(βD0).

First recall that the elements of MA areσ(m) cosh(α) 0 σ(m) sinh(α)
0 m 0

σ(m) sinh(α) 0 σ(m) cosh(α)

, (m,α ↔ m′, β),

where σ(m) ∈ {±1} such that σ(m) 0 0
0 m 0
0 0 σ(m)

 ∈ G.

Furthermore, for exp(x · P )w exp(y · P ) we get1 − x2

2 −xT
• −x2

2
x• 1 x•

x2

2 xT
• 1 + x2

2


w0 0 0

0 w 0
0 0 −w0


1 − y2

2 −yT
• −y2

2
y• 1 y•

y2

2 yT
• 1 + y2

2



=

w0 − wµνx
µyν + w0

−x2−y2+x2y2

2 −w0(1 − x2)yT
• − xT

• w −wµνx
µyν + w0

x2−y2+x2y2

2
w0(1 − y2)x• + wy• w − 2w0x

•yT
• −w0(1 + y2)x• + wy•

wµνx
µyν + w0

x2−y2−x2y2

2 −w0(1 + x2)yT
• + xT

• w −w0 + wµνx
µyν + w0

−x2−y2−x2y2

2

.
Thus, multiplying it all together, we getA ∗ C

∗ ∗ ∗
G ∗ I


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with

A = σ(m)σ(m′)
(

− w0y
2

2 exp(α+ β) + w0
2 exp(α− β) + w0 + w0x

2y2 − 2wµνx
µyν

2 exp(−α+ β)

− w0x
2

2 exp(−α− β)
)

C = σ(m)σ(m′)
(

− w0y
2

2 exp(α+ β) − w0
2 exp(α− β) + w0 + w0x

2y2 − 2wµνx
µyν

2 exp(−α+ β)

+ w0x
2

2 exp(−α− β)
)

G = σ(m)σ(m′)
(

− w0y
2

2 exp(α+ β) + w0
2 exp(α− β) − w0 + w0x

2y2 − 2wµνx
µyν

2 exp(−α+ β)

+ w0x
2

2 exp(−α− β)
)

I = σ(m)σ(m′)
(

− w0y
2

2 exp(α+ β) − w0
2 exp(α− β) − w0 + w0x

2y2 − 2wµνx
µyν

2 exp(−α+ β)

− w0x
2

2 exp(−α− β)
)
.

This shows that

A+ C +G+ I

2σ(m)σ(m′)w0
= y2 exp(α+ β)

A+ C −G− I

2σ(m)σ(m′)w0
= (1 − 2w0wµνx

µyν + x2y2) exp(−α+ β)

A− C +G− I

2σ(m)σ(m′)w0
= exp(α− β)

A− C −G+ I

2σ(m)σ(m′)w0
= −x2 exp(−α− β).

As a consequence,

(C +G)2 − (A+ I)2

4 = x2y2

(A− I)2 − (C −G)2

4 = 1 − 2w0wµνx
µyν + x2y2

log
(∣∣∣∣∣x2(A− C +G− I)

A− C −G+ I

∣∣∣∣∣
)

= 2α

log
(∣∣∣∣∣ 4x2

(A− C)2 − (G− I)2

∣∣∣∣∣
)

= 2β.
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If we assume that x2 = ±1, then

±(C +G)2 − (A+ I)2

4 = y2

±(A− I)2 − (C −G)2

4 = (y ∓ w0wx)2

log
(∣∣∣∣(A− C +G− I)

A− C −G+ I

∣∣∣∣) = 2α

log
(∣∣∣∣ 4

(A− C)2 − (G− I)2

∣∣∣∣) = 2β.

For (x, y) ∈ Yστ from Proposition 3.3.9 we see that the scalars y2 and (y ∓ w0wx)2

are precisely those that occur in (3.3). In conclusion, for

U ∋ x =

A ∗ C
∗ ∗ ∗
G ∗ I


we have

u(x) = 4
(A− I)2 − (C −G)2 , v(x) = (C +G)2 − (A+ I)2

(A− I)2 − (C −G)2

and x ∈ M exp(αD0)Yστ exp(βD0)M for

α = 1
2 log

(∣∣∣∣(A− C +G− I)
A− C −G+ I

∣∣∣∣), β = 1
2 log

(∣∣∣∣ 4
(A− C)2 − (G− I)2

∣∣∣∣).
B.6. Embedding αY

We begin by evaluating our invariant bilinear form B. For that first note that

tr(EµνEρσ) = Eµνα
βE

ρσβ
α

= ηµαδν
βη

ρβδσ
α

= ηµσηνρ.

Thus, we have

B(Fµν , F ρσ) = tr(EµνEρσ − EνµEρσ − EµνEσρ + EνµEσρ)
= 2ηµσηνρ − 2ηµρηνσ.

This shows that
(
−1

2Fµν

)
µ<ν

is the dual basis of (Fµν)µ<ν of m. From this, we can
conclude that

B(D0, D0) = B(F 0,d+1, F 0,d+1) = −2η00ηd+1,d+1 = 2
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and that

B(Pµ,Kν) = B(−F 0,µ − F d+1,µ, F 0,ν − F d+1,ν)
= 2η00ηµν − 2ηd+1,d+1ηµν

= 4ηµν .

This shows that the bases
1
4P1, . . . ,

1
4Pd,

1
4K1, . . . ,

1
4Kd

and K1, . . . ,Kd, P 1, . . . , P d of Y = n ⊕ n are dual.
As a consequence, the quadratic Casimir elements of g and r can be written as

Ωg = −1
2

∑
1≤µ<ν≤d

FµνF
µν + D2

0
2 + 1

4PµK
µ + 1

4K
µPµ

= −1
4FµνF

µν + 1
2D

2
0 + 1

4{Pµ,Kµ}

= −1
4FµνF

µν + 1
2D0(D0 + d) + 1

2P
µKµ

= −1
4FµνF

µν + 1
2D0(D0 − d) + 1

2K
µPµ

Ωr = −1
4FµνF

µν + 1
2D

2
0.

Furthermore, the map αY from (4.1) can be written as

αY (ξ) = 1
64
(
B(ξ, [Pµ, Pν ])KµKν +B(ξ, [Pµ,Kν ])KµP ν

+B(ξ, [Kν , Pµ])PµKν +B(ξ, [Kµ,Kν ])PµP ν
)
.

Using that the P ’s and K’s commute among each other and that [Kµ, Pν ] = 2Fµν +
2ηµνD0, we obtain

αY (ξ) = 1
32(B(ξ, Fµν − ηµνD0)KµP ν +B(ξ, Fµν + ηµνD0)PµKν).

For the case ξ = Fµν we obtain

αY (Fµν) = 1
16(ηµσηνρ − ηµρηνσ)(KρP σ −KσP ρ)

= 1
8(KνPµ −KµP ν)

where we used that the coefficient in front of terms with σ = ρ is 0, so Kσ, P ρ anticom-
mute.
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For the case ξ = D0 we obtain

αY (D0) = 1
16(−KµPµ + PµK

µ)

= 1
16[Pµ,Kµ]

= 1
8(PµKµ + 4d) = −1

8(KµPµ + 4d).

Finally, we can now use this to calculate αY (Ωr):

1
4αY (FµνF

µν) = 1
256

∑
µ̸=ν

(KνPµ −KµPν)(KνPµ −KµP ν)

= 1
128

∑
µ̸=ν

(KνPµK
νPµ −KµPνK

νPµ)

= 1
128

∑
µ̸=ν

(−KνK
νPµP

µ + 8δν
νK

µPµ +KµK
νPνP

µ)

= d− 1
16 KµPµ − 1

128K
µKνPµPν

1
2αY (D0)2 = 1

128(4d+KµPµ)(4d+KνPν)

= d2

8 + d

16K
µPµ + 1

128K
µPµK

νPν

= d2

8 + d

16K
µPµ + 1

128(−8KµPν −KµKνPµPν)

= d2

8 + d− 1
16 KµPµ − 1

128K
µKνPµPν .

And thus,

αY (Ωr) = d2

8 .
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